دورية أكاديمية

Cellular recovery after prolonged warm ischaemia of the whole body.

التفاصيل البيبلوغرافية
العنوان: Cellular recovery after prolonged warm ischaemia of the whole body.
المؤلفون: Andrijevic D; Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA., Vrselja Z; Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA., Lysyy T; Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.; Department of Surgery, Yale School of Medicine New Haven, New Haven, CT, USA., Zhang S; Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.; Department of Genetics, Yale School of Medicine, New Haven, CT, USA., Skarica M; Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA., Spajic A; Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA., Dellal D; Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.; Department of Biomedical Engineering, Yale University, New Haven, CT, USA., Thorn SL; Yale Translational Research Imaging Center, Department of Medicine, Yale School of Medicine, New Haven, CT, USA., Duckrow RB; Department of Neurology, Yale University School of Medicine, New Haven, CT, USA., Ma S; Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA., Duy PQ; Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.; Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.; Medical Scientist Training Program (MD-PhD), Yale School of Medicine, New Haven, CT, USA., Isiktas AU; Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA., Liang D; Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA., Li M; Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA., Kim SK; Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA., Daniele SG; Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.; Medical Scientist Training Program (MD-PhD), Yale School of Medicine, New Haven, CT, USA., Banu K; Department of Nephrology, Yale School of Medicine, New Haven, CT, USA., Perincheri S; Department of Pathology, Yale School of Medicine, New Haven, CT, USA., Menon MC; Department of Nephrology, Yale School of Medicine, New Haven, CT, USA., Huttner A; Department of Pathology, Yale School of Medicine, New Haven, CT, USA., Sheth KN; Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.; Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA., Gobeske KT; Department of Neurology, Yale University School of Medicine, New Haven, CT, USA., Tietjen GT; Department of Surgery, Yale School of Medicine New Haven, New Haven, CT, USA.; Department of Biomedical Engineering, Yale University, New Haven, CT, USA., Zaveri HP; Department of Neurology, Yale University School of Medicine, New Haven, CT, USA., Latham SR; Interdisciplinary Center for Bioethics, Yale University, New Haven, CT, USA., Sinusas AJ; Department of Genetics, Yale School of Medicine, New Haven, CT, USA.; Department of Biomedical Engineering, Yale University, New Haven, CT, USA.; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA., Sestan N; Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA. nenad.sestan@yale.edu.; Department of Genetics, Yale School of Medicine, New Haven, CT, USA. nenad.sestan@yale.edu.; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA. nenad.sestan@yale.edu.; Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA. nenad.sestan@yale.edu.; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT, USA. nenad.sestan@yale.edu.; Yale Child Study Center, New Haven, CT, USA. nenad.sestan@yale.edu.
المصدر: Nature [Nature] 2022 Aug; Vol. 608 (7922), pp. 405-412. Date of Electronic Publication: 2022 Aug 03.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Cell Survival* , Cytoprotection* , Perfusion*/methods , Swine*/anatomy & histology , Warm Ischemia*, Animals ; Cell Death ; Gene Expression Profiling ; Ischemia/metabolism ; Ischemia/pathology ; Ischemia/prevention & control ; Organ Specificity
مستخلص: After cessation of blood flow or similar ischaemic exposures, deleterious molecular cascades commence in mammalian cells, eventually leading to their death 1,2 . Yet with targeted interventions, these processes can be mitigated or reversed, even minutes or hours post mortem, as also reported in the isolated porcine brain using BrainEx technology 3 . To date, translating single-organ interventions to intact, whole-body applications remains hampered by circulatory and multisystem physiological challenges. Here we describe OrganEx, an adaptation of the BrainEx extracorporeal pulsatile-perfusion system and cytoprotective perfusate for porcine whole-body settings. After 1 h of warm ischaemia, OrganEx application preserved tissue integrity, decreased cell death and restored selected molecular and cellular processes across multiple vital organs. Commensurately, single-nucleus transcriptomic analysis revealed organ- and cell-type-specific gene expression patterns that are reflective of specific molecular and cellular repair processes. Our analysis comprises a comprehensive resource of cell-type-specific changes during defined ischaemic intervals and perfusion interventions spanning multiple organs, and it reveals an underappreciated potential for cellular recovery after prolonged whole-body warm ischaemia in a large mammal.
(© 2022. The Author(s), under exclusive licence to Springer Nature Limited.)
التعليقات: Comment in: Nature. 2022 Aug;608(7922):273-274. (PMID: 35922486)
Comment in: Nat Rev Nephrol. 2022 Oct;18(10):605. (PMID: 36042350)
Comment in: Gastroenterology. 2023 Apr;164(4):696-697. (PMID: 36400180)
References: Lee, P., Chandel, N. S. & Simon, M. C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat. Rev. Mol. Cell Biol. 21, 268–283 (2020). (PMID: 32144406722202410.1038/s41580-020-0227-y)
Daniele, S. G. et al. Brain vulnerability and viability after ischaemia. Nat. Rev. Neurosci. 22, 553–572 (2021). (PMID: 3429039710.1038/s41583-021-00488-y)
Vrselja, Z. et al. Restoration of brain circulation and cellular functions hours post-mortem. Nature 568, 336–343 (2019). (PMID: 30996318684418910.1038/s41586-019-1099-1)
Hsia, C. C., Schmitz, A., Lambertz, M., Perry, S. F. & Maina, J. N. Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky. Compr. Physiol. 3, 849–915 (2013). (PMID: 23720333392613010.1002/cphy.c120003)
Eltzschig, H. K. & Eckle, T. Ischemia and reperfusion-from mechanism to translation. Nat. Med. 17, 1391–1401 (2011). (PMID: 2206442910.1038/nm.2507)
Iadecola, C., Buckwalter, M. S. & Anrather, J. Immune responses to stroke: mechanisms, modulation, and therapeutic potential. J. Clin. Invest. 130, 2777–2788 (2020). (PMID: 32391806726002910.1172/JCI135530)
Trump, B. F. & Harris, C. C. Human tissues in biomedical research. Hum. Pathol. 10, 245–248 (1979). (PMID: 46821310.1016/S0046-8177(79)80019-2)
Brasile, L. et al. Overcoming severe renal ischemia: the role of ex vivo warm perfusion. Transplantation 73, 897–901 (2002). (PMID: 1192368810.1097/00007890-200203270-00011)
García Sáez, D. et al. Ex vivo heart perfusion after cardiocirculatory death; a porcine model. J. Surg. Res. 195, 311–314 (2015). (PMID: 2561797210.1016/j.jss.2014.12.039)
Schön, M. R. et al. Liver transplantation after organ preservation with normothermic extracorporeal perfusion. Ann. Surg. 233, 114–123 (2001). (PMID: 11141233142117410.1097/00000658-200101000-00017)
Charles, E. J. et al. Ex vivo assessment of porcine donation after circulatory death lungs that undergo increasing warm ischemia times. Transplant Direct 4, e405 (2018). (PMID: 30584586628308610.1097/TXD.0000000000000845)
Taunyane, I. C. et al. Preserved brain morphology after controlled automated reperfusion of the whole body following normothermic circulatory arrest time of up to 20 minutes. Eur. J. Cardiothorac. Surg. 50, 1025–1034 (2016). (PMID: 2726107810.1093/ejcts/ezw186)
Grunau, B. et al. Comparing the prognosis of those with initial shockable and non-shockable rhythms with increasing durations of CPR: informing minimum durations of resuscitation. Resuscitation 101, 50–56 (2016). (PMID: 2685170510.1016/j.resuscitation.2016.01.021)
Lequier, L., Horton, S. B., McMullan, D. M. & Bartlett, R. H. Extracorporeal membrane oxygenation circuitry. Pediatr. Crit. Care Med. 14, S7–S12 (2013). (PMID: 23735989374233110.1097/PCC.0b013e318292dd10)
Kirino, T. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res. 239, 57–69 (1982). (PMID: 709369110.1016/0006-8993(82)90833-2)
Pulsinelli, W. A., Brierley, J. B. & Plum, F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann. Neurol. 11, 491–498 (1982). (PMID: 710342510.1002/ana.410110509)
Unal-Cevik, I., Kilinç, M., Gürsoy-Ozdemir, Y., Gurer, G. & Dalkara, T. Loss of NeuN immunoreactivity after cerebral ischemia does not indicate neuronal cell loss: a cautionary note. Brain Res. 1015, 169–174 (2004). (PMID: 1522338110.1016/j.brainres.2004.04.032)
Kroemer, G. et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 16, 3–11 (2009). (PMID: 1884610710.1038/cdd.2008.150)
Zhang, P. L. et al. Kidney injury molecule-1 expression in transplant biopsies is a sensitive measure of cell injury. Kidney Int. 73, 608–614 (2008). (PMID: 1816096410.1038/sj.ki.5002697)
Nadasdy, T., Laszik, Z., Blick, K. E., Johnson, L. D. & Silva, F. G. Proliferative activity of intrinsic cell populations in the normal human kidney. J. Am. Soc. Nephrol. 4, 2032–2039 (1994). (PMID: 791915610.1681/ASN.V4122032)
Dunn, A. F., Catterton, M. A., Dixon, D. D. & Pompano, R. R. Spatially resolved measurement of dynamic glucose uptake in live ex vivo tissues. Anal. Chim. Acta 1141, 47–56 (2021). (PMID: 3324866110.1016/j.aca.2020.10.027)
Fishbein, M. C., Wang, T., Matijasevic, M., Hong, L. & Apple, F. S. Myocardial tissue troponins T and I. An immunohistochemical study in experimental models of myocardial ischemia. Cardiovasc. Pathol. 12, 65–71 (2003). (PMID: 1268416010.1016/S1054-8807(02)00188-6)
Brown, D. J., Brugger, H., Boyd, J. & Paal, P. Accidental hypothermia. N. Engl. J. Med. 367, 1930–1938 (2012). (PMID: 2315096010.1056/NEJMra1114208)
Guluma, K. Z. et al. Therapeutic hypothermia is associated with a decrease in urine output in acute stroke patients. Resuscitation 81, 1642–1647 (2010). (PMID: 20817376299138510.1016/j.resuscitation.2010.08.003)
Villa, G., Katz, N. & Ronco, C. Extracorporeal membrane oxygenation and the kidney. Cardiorenal Med. 6, 50–60 (2015). (PMID: 27194996469863910.1159/000439444)
Tujjar, O. et al. Acute kidney injury after cardiac arrest. Crit. Care 19, 169 (2015). (PMID: 25887258441625910.1186/s13054-015-0900-2)
Dieterich, D. C. et al. In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat. Neurosci. 13, 897–905 (2010). (PMID: 20543841292059710.1038/nn.2580)
Movahed, M., Brockie, S., Hong, J. & Fehlings, M. G. Transcriptomic hallmarks of ischemia-reperfusion injury. Cells 10, 1838 (2021). (PMID: 34360008830564910.3390/cells10071838)
Huang, J. et al. Effects of ischemia on gene expression. J. Surg. Res. 99, 222–227 (2001). (PMID: 1146989010.1006/jsre.2001.6195)
Molenaar, B. et al. Single-cell transcriptomics following ischemic injury identifies a role for B2M in cardiac repair. Commun. Biol. 4, 146 (2021). (PMID: 33514846784678010.1038/s42003-020-01636-3)
Androvic, P. et al. Decoding the transcriptional response to ischemic stroke in young and aged mouse brain. Cell Rep. 31, 107777 (2020). (PMID: 3255317010.1016/j.celrep.2020.107777)
Ferreira, P. G. et al. The effects of death and post-mortem cold ischemia on human tissue transcriptomes. Nat. Commun. 9, 490 (2018). (PMID: 29440659581150810.1038/s41467-017-02772-x)
Kirita, Y., Wu, H., Uchimura, K., Wilson, P. C. & Humphreys, B. D. Cell profiling of mouse acute kidney injury reveals conserved cellular responses to injury. Proc. Natl Acad. Sci. USA 117, 15874–15883 (2020). (PMID: 32571916735504910.1073/pnas.2005477117)
Skinnider, M. A. et al. Cell type prioritization in single-cell data. Nat. Biotechnol. 39, 30–34 (2021). (PMID: 3269097210.1038/s41587-020-0605-1)
Jurga, A. M., Paleczna, M. & Kuter, K. Z. Overview of general and discriminating markers of differential microglia phenotypes. Front. Cell Neurosci. 14, 198 (2020). (PMID: 32848611742405810.3389/fncel.2020.00198)
Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017). (PMID: 28099414540489010.1038/nature21029)
Lopaschuk, G. D. & Stanley, W. C. Glucose metabolism in the ischemic heart. Circulation 95, 313–315 (1997). (PMID: 900844110.1161/01.CIR.95.2.313)
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008). (PMID: 19114008263148810.1186/1471-2105-9-559)
Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021). (PMID: 33597522788987110.1038/s41467-021-21246-9)
Markmann, J. F. et al. Impact of portable normothermic blood-based machine perfusion on outcomes of liver transplant: the OCS Liver PROTECT randomized clinical trial. JAMA Surg. 157, 189–198 (2022). (PMID: 34985503873386910.1001/jamasurg.2021.6781)
De Carlis, R. et al. How to preserve liver grafts from circulatory death with long warm ischemia? A retrospective Italian cohort study with normothermic regional perfusion and hypothermic oxygenated perfusion. Transplantation 105, 2385–2396 (2021). (PMID: 3361721110.1097/TP.0000000000003595)
Smith, D. E. et al. Early experience with donation after circulatory death heart transplantation using normothermic regional perfusion in the United States. J. Thorac. Cardiovasc. Surg. 164, 557–568.e1 (2022). (PMID: 3472808410.1016/j.jtcvs.2021.07.059)
Sellers, M. T. et al. Early United States experience with liver donation after circulatory determination of death using thoraco‐abdominal normothermic regional perfusion: a multi‐institutional observational study. Clin. Transplant. 36, e14659 (2022). (PMID: 3536215210.1111/ctr.14659)
De Beule, J. et al. A systematic review and meta-analyses of regional perfusion in donation after circulatory death solid organ transplantation. Transpl. Int. 34, 2046–2060 (2021). (PMID: 3457038010.1111/tri.14121)
De Charrière, A. et al. ECMO in cardiac arrest: a narrative review of the literature. J. Clin. Med. 10, 534 (2021). (PMID: 33540537786712110.3390/jcm10030534)
Zhu, Y. et al. Spatiotemporal transcriptomic divergence across human and macaque brain development. Science 362, eaat8077 (2018). (PMID: 30545855690098210.1126/science.aat8077)
Li, M. et al. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science 362, eaat7615 (2018). (PMID: 30545854641331710.1126/science.aat7615)
Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017). (PMID: 28091601524181810.1038/ncomms14049)
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019). (PMID: 31178118668739810.1016/j.cell.2019.05.031)
Kobak, D. & Linderman, G. C. Initialization is critical for preserving global data structure in both t-SNE and UMAP. Nat. Biotechnol. 39, 156–157 (2021). (PMID: 3352694510.1038/s41587-020-00809-z)
Stewart, B. J. et al. Spatiotemporal immune zonation of the human kidney. Science 365, 1461–1466 (2019). (PMID: 31604275734352510.1126/science.aat5031)
Litviňuková, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020). (PMID: 32971526768177510.1038/s41586-020-2797-4)
Franjic, D. et al. Transcriptomic taxonomy and neurogenic trajectories of adult human, macaque, and pig hippocampal and entorhinal cells. Neuron 110, 452–469 (2021). (PMID: 3479804710.1016/j.neuron.2021.10.036)
MacParland, S. A. et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat. Commun. 9, 4383 (2018). (PMID: 30348985619728910.1038/s41467-018-06318-7)
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021). (PMID: 34062119823849910.1016/j.cell.2021.04.048)
Blighe K., Rana, S., Lewis, M. EnhancedVolcano: publication-ready volcano plots with enhanced colouring and labeling (2018); https://github.com/kevinblighe/EnhancedVolcano.
Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012). (PMID: 22455463333937910.1089/omi.2011.0118)
Laposata, M. Laboratory Medicine: The Diagnosis of Disease in the Clinical Laboratory 364 (McGraw-Hill Education, 2012).
Lee, J. W., Chou, C.-L. & Knepper, M. A. Deep sequencing in microdissected renal tubules identifies nephron segment–specific transcriptomes. J. Am. Soc. Nephrol. 26, 2669–2677 (2015). (PMID: 25817355462568110.1681/ASN.2014111067)
Cavalcante, G. C. et al. A cell’s fate: an overview of the molecular biology and genetics of apoptosis. Int. J. Mol. Sci. 20, 4133 (2019). (PMID: 674745410.3390/ijms20174133)
Yu, P. et al. Pyroptosis: mechanisms and diseases. Signal Transduct. Target. Ther. 6, 128 (2021). (PMID: 33776057800549410.1038/s41392-021-00507-5)
Li, J. et al. Ferroptosis: past present and future. Cell Death Dis. 11, 88 (2020). (PMID: 32015325699735310.1038/s41419-020-2298-2)
Dhuriya, Y. K. & Sharma, D. Necroptosis: a regulated inflammatory mode of cell death. J. Neuroinflammation 15, 199 (2018). (PMID: 29980212603541710.1186/s12974-018-1235-0)
Alexa, A. & Rahnenfuhrer, J. topGO: enrichment analysis for Gene Ontology. R package version 2.48.0 (2022).
Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017). (PMID: 28991892593767610.1038/nmeth.4463)
Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014). (PMID: 24658644412233310.1038/nbt.2859)
McQuin, C. et al. CellProfiler 3.0: next-generation image processing for biology. PLoS Biol. 16, e2005970 (2018). (PMID: 29969450602984110.1371/journal.pbio.2005970)
Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002). (PMID: 117522959912210.1093/nar/30.1.207)
معلومات مُعتمدة: F30 HD106694 United States HD NICHD NIH HHS; R01 DK122164 United States DK NIDDK NIH HHS; RF1 MH117064 United States MH NIMH NIH HHS; R21 DK128662 United States DK NIDDK NIH HHS; R01 MH113257 United States MH NIMH NIH HHS; UL1 TR001863 United States TR NCATS NIH HHS; T32 GM136651 United States GM NIGMS NIH HHS
تواريخ الأحداث: Date Created: 20220803 Date Completed: 20220812 Latest Revision: 20230327
رمز التحديث: 20240829
مُعرف محوري في PubMed: PMC9518831
DOI: 10.1038/s41586-022-05016-1
PMID: 35922506
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-022-05016-1