دورية أكاديمية

Insight into the structural basis of the dual inhibitory mode of Lima bean (Phaseolus lunatus) serine protease inhibitor.

التفاصيل البيبلوغرافية
العنوان: Insight into the structural basis of the dual inhibitory mode of Lima bean (Phaseolus lunatus) serine protease inhibitor.
المؤلفون: Ahmad MS; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan., Akbar Z; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan., Choudhary MI; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
المصدر: Proteins [Proteins] 2023 Jan; Vol. 91 (1), pp. 22-31. Date of Electronic Publication: 2022 Aug 23.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 8700181 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-0134 (Electronic) Linking ISSN: 08873585 NLM ISO Abbreviation: Proteins Subsets: MEDLINE
أسماء مطبوعة: Publication: New York, NY : Wiley-Liss
Original Publication: New York : Alan R. Liss, c1986-
مواضيع طبية MeSH: Trypsin Inhibitor, Bowman-Birk Soybean*/chemistry , Trypsin Inhibitor, Bowman-Birk Soybean*/metabolism , Phaseolus*, Cattle ; Animals ; Trypsin/metabolism ; Serine Proteinase Inhibitors/pharmacology ; Amino Acid Sequence ; Trypsin Inhibitors/chemistry ; Trypsin Inhibitors/metabolism ; Chymotrypsin
مستخلص: Bovine pancreatic trypsin was crystallized, in-complex with Lima bean trypsin inhibitor (LBTI) (Phaseolus lunatus L.), in the form of a ternary complex. LBTI is a Bowman-Birk-type bifunctional serine protease inhibitor, which has two independent inhibitory loops. Both of the loops can inhibit trypsin, however, only the hydrophobic loop is specific for inhibiting chymotrypsin. The structure of trypsin incomplex with the LBTI has been solved and refined at 2.25 Å resolution, in the space group P4 1, with R work /R free values of 18.1/23.3. The two binding sites of LBTI differ in only two amino acids. Lysine and leucine are the key residues of the two different binding loops positioned at the P1, and involved in binding the S1 binding site of trypsin. The asymmetric unit cell contains two molecules of trypsin and one molecule of LBTI. The key interactions include hydrogen bonds between LBTI and active site residues of trypsin. The 3D structure of the enzyme-inhibitor complex provided details insight into the trypsin inhibition by LBTI. To the best of our knowledge, this is the first report on the structure of trypsin incomplex with LBTI.
(© 2022 Wiley Periodicals LLC.)
References: Helland R, Berglund GI, Otlewski J, et al. High-resolution structures of three new trypsin-squash-inhibitor complexes: a detailed comparison with other trypsins and their complexes. Acta Crystallogr D Biol Crystallogr. 1999;55(1):139-148.
Mintoo M, Chakravarty A, Tilvawala R. N-Terminomics strategies for protease substrates profiling. Molecules. 2021;26(15):4699.
Veloso AB, Vahia LS, Lopes GD, et al. In-depth characterization of trypsin-like serine peptidases in the midgut of the sugar fed Culex quinquefasciatus. Parasit Vectors. 2015;8(1):1-16.
Rio ARD, Keppler JK, Boom RM, Janssen AEM. Protein acidification and hydrolysis by pepsin ensure efficient trypsin-catalyzed hydrolysis. Food Funct. 2021;12(10):4570-4581.
Kaur J, Singh PK. Trypsin detection strategies: A review. Crit Rev Anal Chem. 2020;52(5):949-967.
Gupta SP, Gupta SD. Cancer-leading proteases: An introduction. Cancer-Leading Proteases: Structures, Functions, and Inhibition. Elsevier; 2020:1-11.
Mitchell R, Byrne MF, Baillie J. Pancreatitis. The Lancet. 2003;361(9367):1447-1455.
Brandl T, Simic O, Skaanderup PR, et al. Trypsin inhibitors for the treatment of pancreatitis. Bioorg Med Chem Lett. 2016;26(17):4340-4344.
Park Y, Choi BH, Kwak JS, et al. Kunitz-type serine protease inhibitor from potato (Solanum tuberosum L. cv. Jopung). J Agric Food Chem. 2005;53(16):6491-6496.
Ye XY, Ng TB, Rao PF. A Bowman-Birk-type trypsin-chymotrypsin inhibitor from broad beans. Biochem Biophys Res Commun. 2001;289(1):91-96.
Srikanth S, Chen Z. Plant protease inhibitors in therapeutics-focus on cancer therapy. Front Pharmacol. 2016;7:470.
Clemente A, Domoney C. Biological significance of polymorphism in legume protease inhibitors from the Bowman-Birk family. Curr Protein Pept Sci. 2006;7(3):201-216.
Akbari S, Akrami H, Mostafaei A, Kiani S. Bowman-Birk inhibitor modifies transcription of autophagy and apoptosis genes in an in vitro model of Alzheimer's disorder. J Cell Biochem. 2019;120:11150-11157.
Agata GD, Maciejewska A, Dębowski D. Bowman-Birk inhibitors: Insights into family of multifunctional proteins and peptides with potential therapeutical applications. Pharmaceuticals. 2020;13(12):421.
Safavi F, Rostami A. Role of serine proteases in inflammation: Bowman-Birk protease inhibitor (BBI) as a potential therapy for autoimmune diseases. Exp Mol Pathol. 2012;93(3):428-433.
Clemente A, Manzano MM, Arques M, Domoney C. Bowman-Birk inhibitors from legumes: Utilisation in disease prevention and therapy. Bioactive Food Peptides in Health and Diseases. IntechOpen; 2013:23-44.
Debreczeni JE, Bunkóczi G, Girmann B, Sheldrick GM. In-house phase determination of the lima bean trypsin inhibitor: A low-resolution sulfur-SAD case. Acta Crystallogr D Biol Crystallogr. 2003;59(2):393-395.
Birk Y. Lima bean trypsin inhibitors. Methods in Enzymology. Elsevier; 1976:707-709.
Vulpetti A, Schiering N, Dalvit C. Function, bioinformatics, combined use of computational chemistry, NMR screening, and X-ray crystallography for identification and characterization of fluorophilic protein environments. Proteins. 2010;78(16):3281-3291.
Mirza S, Akbar Z, Ahmad MS. A simple nondestructive, cost-effective method for differentiation of protein crystals from salt crystals by using a natural dye. Cryst Growth Des. 2019;19(7):3612-3615.
Evans PR. An introduction to data reduction: Space-group determination, scaling and intensity statistics. Acta Crystallogr D Biol Crystallogr. 2011;67(4):282-292.
Ngo K, Collins-Kautz C, Gerstenecker S, Wagner B, Heine A, Klebe G. Protein-induced change in ligand protonation during trypsin and thrombin binding: hint on differences in selectivity determinants of both proteins. J Med Chem. 2020;63(6):3274-3289.
Vagin A, Teplyakov A. Molecular replacement with MOLREP. Acta Crystallogr D Biol Crystallogr. 2010;66(1):22-25.
Murshudov GN, Skubák P, Lebedev AA, et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr. 2011;67(4):355-367.
Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60(12):2126-2132.
Adams PD, Afonine PV, Bunkoczi G, et al. PHENIX: A comprehensive python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr. 2010;66:213-221.
Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst. 1993;26(2):283-291.
McNicholas S, Potterton E, Wilson K, Noble M. Presenting your structures: The CCP4mg molecular-graphics software. Acta Crystallogr D Biol Crystallogr. 2011;67(4):386-394.
Winn MD, Ballard CC, Cowtan KD, et al. Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr. 2011;67(4):235-242.
Koepke J, Ermler U, Warkentin E, Wenzl G, Flecker P. Crystal structure of cancer chemopreventive Bowman-Birk inhibitor in ternary complex with bovine trypsin at 2.3 Å resolution. Structural basis of Janus-faced serine protease inhibitor specificity. J Mol Biol. 2000;298(3):477-491.
Capaldi S, Perduca M, Faggion B, et al. Crystal structure of the anticarcinogenic Bowman-Birk inhibitor from Snail medic (Medicago scutellata) seeds complexed with bovine trypsin. J Struct Biol. 2007;158(1):71-79.
Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol. 2007;372(3):774-797.
Tsunogae Y, Tanaka I, Yamane T, et al. Structure of the trypsin-binding domain of Bowman-Birk type protease inhibitor and its interaction with trypsin. J Biochem. 1986;100(6):1637-1646.
Barbosa JARG, Silva LP, Teles RCL, et al. Crystal structure of the Bowman-Birk inhibitor from Vigna unguiculata seeds in complex with β-trypsin at 1.55 Å resolution and its structural properties in association with proteinases. Biophys J. 2007;92(5):1638-1650.
فهرسة مساهمة: Keywords: Bowman-Birk-type inhibitors; Lima bean; Lima bean trypsin inhibitor; pancreatitis; serine protease; trypsin
المشرفين على المادة: 0 (Trypsin Inhibitor, Bowman-Birk Soybean)
EC 3.4.21.4 (Trypsin)
0 (Serine Proteinase Inhibitors)
0 (Trypsin Inhibitors)
EC 3.4.21.1 (Chymotrypsin)
تواريخ الأحداث: Date Created: 20220804 Date Completed: 20221215 Latest Revision: 20230220
رمز التحديث: 20240628
DOI: 10.1002/prot.26407
PMID: 35927030
قاعدة البيانات: MEDLINE