دورية أكاديمية

Growth, physiological, biochemical and molecular changes in plants induced by magnetic fields: A review.

التفاصيل البيبلوغرافية
العنوان: Growth, physiological, biochemical and molecular changes in plants induced by magnetic fields: A review.
المؤلفون: Hafeez MB; College of Agronomy, Northwest A&F University, Yangling, China., Zahra N; Department of Botany, University of Agriculture, Faisalabad, Pakistan., Ahmad N; College of Agronomy, Northwest A&F University, Yangling, China., Shi Z; College of Agronomy, Northwest A&F University, Yangling, China., Raza A; College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China., Wang X; College of Agronomy, Northwest A&F University, Yangling, China., Li J; College of Agronomy, Northwest A&F University, Yangling, China.
المصدر: Plant biology (Stuttgart, Germany) [Plant Biol (Stuttg)] 2023 Jan; Vol. 25 (1), pp. 8-23. Date of Electronic Publication: 2022 Aug 23.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 101148926 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1438-8677 (Electronic) Linking ISSN: 14358603 NLM ISO Abbreviation: Plant Biol (Stuttg) Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford, England : Wiley
Original Publication: Stuttgart : New York, NY : G. Thieme Verlag ; Thieme New York, c1999-
مواضيع طبية MeSH: Glia Maturation Factor* , Magnetic Fields*, Plant Development ; Photosynthesis ; Crops, Agricultural
مستخلص: The Earth's geomagnetic field (GMF) is an inescapable environmental factor for plants that affects all growth and yield parameters. Both strong and weak magnetic fields (MF), as compared to the GMF, have specific roles in plant growth and development. MF technology is an eco-friendly technique that does not emit waste or generate harmful radiation, nor require any external power supply, so it can be used in sustainable modern agriculture. Thus, exposure of plants to MF is a potential affordable, reusable and safe practice for enhancing crop productivity by changing physiological and biochemical processes. However, the effect of MF on plant physiological and biochemical processes is not yet well understood. This review describes the effects of altering MF conditions (higher or lower values than the GMF) on physiological and biochemical processes of plants. The current contradictory and inconsistent outcomes from studies on varying effects of MF on plants could be related to species and/or MF exposure time and intensity. The reviewed literature suggests MF have a role in changing physiological processes, such as respiration, photosynthesis, nutrient uptake, water relations and biochemical attributes, including genes involved in ROS, antioxidants, enzymes, proteins and secondary metabolites. MF application might efficiently increase growth and yield of many crops, and as such, should be the focus for future research.
(© 2022 German Society for Plant Sciences, Royal Botanical Society of the Netherlands.)
References: Abdel Nabi H., El-Shal Z., Doklega S., Abdel Razek M. (2019) Effect of magnetic water and fertilization requirements on garlic yield and storability. Journal of Plant Production, 10, 73-79.
Abdollahi F., Amiri H., Niknam V., Ghanati F., Mahdigholi K. (2019a) Effects of static magnetic fields on the antioxidant system of almond seeds. Russian Journal of Plant Physiology, 66, 299-307.
Abdollahi F., Amiri H., Niknam V., Ghanati F. (2019b) Growth characteristics, photosynthetic pigments content and phenolic compounds content in the almond (A. scoparia and A. eburnea) exposed to static magnetic field. Journal of Plant Process and Function, 7, 45-50.
Abdolmaleki P., Ghanati F., Sahebjamei H., Sarvestani A.S. (2007) Peroxidase activity, lignification and promotion of cell death in tobacco cells exposed to static magnetic field. The Environmentalist, 27, 435-440.
Afzal I., Mukhtar K., Qasim M., Basra S., Shahid M., Haq Z. (2012) Magnetic stimulation of marigold seed. International Agrophysics, 26, 335-339.
Afzal I., Saleem S., Skalicky M., Javed T., Bakhtavar M.A., Kamran M., Shahid M., Sohail Saddiq M., Afzal A., Shafqat N. (2021) Magnetic field treatments improve sunflower yield by inducing physiological and Biochemical modulations in seeds. Molecules, 26, 2022.
Agliassa C., Narayana R., Bertea C.M., Rodgers C.T., Maffei M.E. (2018a) Reduction of the geomagnetic field delays Arabidopsis thaliana flowering time through downregulation of flowering-related genes. Bioelectromagnetics, 39, 361-374.
Agliassa C., Narayana R., Christie J.M., Maffei M.E. (2018b) Geomagnetic field impacts on cryptochrome and phytochrome signaling. Journal of Photochemistry and Photobiology B: Biology, 185, 32-40.
Ahmad M., Galland P., Ritz T., Wiltschko R., Wiltschko W. (2007) Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana. Planta, 225, 615-624.
Ahmed M., Elzaawel A., Bayoumi Y. (2013) Effect of magnetic field on seeds germination, growth and yield of sweet peper (Capsicum annum L.). Asian Journal of Crop Science, 5, 286-294.
Alemán E.I., Mbogholi A., Boix Y.F., González-Olmedo J., Chalfun A. (2014) Effects of EMFs on some biological parameters in coffee plants (Coffea arabica L.) obtained by in vitro propagation. Development, 8, 14.
Algozari, H., Yao, A. (2006) Effect of the magnetizing of water and fertilizers on the some chemical parameters of soil and growth of maize, MSc thesis, University of Baghdad, Baghdad, Iraq.
Ali A., Arfa Y., Mohamed A.S. (2017) Maximizing water use efficiency for some plants by treated magnetic water technique under east Owainat conditions. Egyptian Journal of Soil Science, 57, 353-369.
Ali A., Alsaady M., Salim H. (2019) Impact of bio fertilizer and magnetic irrigation water on growth and yield of melon Cucumis melo L. IOP conference series: Earth and environmental science. Agriculture College/University of Kerbala, Vol 388, pp 012070. The 4th International Conference on Agricultural Sciences (4thICAS) 17-18 November 2019.
Al-Shrouf, A.M. (2013) The effect of magnetic treatment of irrigation water on cucumber production and water productivity. Acta Hortic, 1054, 111-117.
Anand A., Nagarajan S., Verma A., Joshi D., Pathak P., Bhardwaj J. (2012) Pre-treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (Zea mays L.). Indian Journal of Biochemistry and Biophysics, 49, 63-70.
Aouad A, Baaziz M, Mergoum, M. (2000) http://www.unige.ch/LABPV/newsletters/newsl15/n15p13.html (1 January 2020).
Arababian S., Majd A., Flahian F., Samimi H. (2001) The effect of magnetic field on germination and early growth in tree varieties Arachus hypogaea. Journal of Biological Sciences, 2, 3227-3535.
Asadi-Samani M., Pourakbar L., Azimi N. (2013) Magnetic field effects on seed germination and activities of some enzymes in cumin. Life Science Journal - Acta Zhengzhou University Overseas Edition, 10, 323-328.
Asghar T., Jamil Y., Iqbal M., Abbas M. (2016) Laser light and magnetic field stimulation effect on biochemical, enzymes activities and chlorophyll contents in soybean seeds and seedlings during early growth stages. Journal of Photochemistry and Photobiology B: Biology, 165, 283-290.
Atak, Ç., Alikamanoğlu, S., Danilov, V., Rzakoulieva, A., Yurttaş, B., Topçul, F. (2000) Effect of magnetic field on paulownia seeds. Com. JINR Dubna. E19-2000-231, 1-14.
Atak Ç., Emiroǧlu Ö., Alikamanoǧlu S., Rzakoulieva A. (2003) Stimulation of regeneration by magnetic field in soybean (Glycine max L. Merrill) tissue cultures. Journal of Cell & Molecular Biology, 2, 113-119.
Atak Ç., Çelik Ö., Olgun A., Alikamanoğlu S., Rzakoulieva A. (2007) Effect of magnetic field on peroxidase activities of soybean tissue culture. Biotechnology & Biotechnological Equipment, 21, 166-171.
Azimi N., Majd A., Nejadsattari T., Ghanati F., Arbabian S. (2018) Effects of magnetically-treated water on vegetative growth period, development of gynoecium and anther, and ultrastructure of pollen grains of lentil (Lens culinaris L.). Developmental Biology, 9, 23-32.
Azimian F., Roshandel P. (2015) Magnetic field effects on total phenolic content and antioxidant activity in Artemisia sieberi under salinity. Indian Journal of Plant Physiology, 20, 264-270.
Babaloo F., Majd A., Arbabian S., Sharifnia F., Ghanati F. (2018) Effect of magnetized water on some characteristics of growth and chemical constituent in rice (Oryza sativa L.) var Hashemi. Eurasian Journal of Biosciences, 12, 129-137.
Baby S.M., Narayanaswamy G.K., Anand A. (2011) Superoxide radical production and performance index of photosystem II in leaves from magnetoprimed soybean seeds. Plant Signaling & Behavior, 6, 1635-1637.
Baghel L., Kataria S., Guruprasad K. (2018) Effect of static magnetic field pretreatment on growth, photosynthetic performance and yield of soybean under water stress. Photosynthetica, 56, 718-730.
Bahadir A., Beyaz R., Yildiz M. (2018) Effect of magnetic field on in vitro seedling growth and shoot regeneration from cotyledon node explants of Lathyrus chrysanthus boiss. Bioelectromagnetics, 39, 547-555.
Baran B., Berezyuk O., Golonzhka V. (2006) Water systems after magnetic field action. Environmental Research, Engineering and Management, 38, 19-23.
Basant M., Bunce S., Harshan G. (2007) Irrigation and water saving potential of magnetic treated water in vegetable crops. Research Direction Office of Research Services, Sydney, Australia, pp 12-22.
Baum J.W., Nauman C.H. (1984) Influence of strong magnetic fields on genetic endpoints in Tradescantia tetrads and stamen hairs. Environmental Mutagenesis, 6, 49-58.
Belyavskaya N. (2001) Ultrastructure and calcium balance in meristem cells of pea roots exposed to extremely low magnetic fields. Advances in Space Research, 28, 645-650.
Belyavskaya N. (2004) Biological effects due to weak magnetic field on plants. Advances in Space Research, 34, 1566-1574.
Bertea C.M., Narayana R., Agliassa C., Rodgers C.T., Maffei M.E. (2015) Geomagnetic field (Gmf) and plant evolution: investigating the effects of Gmf reversal on Arabidopsis thaliana development and gene expression. Journal of Visualized Experiments, 105, e53286.
Betti L., Trebbi G., Fregola F., Zurla M., Mesirca P., Brizzi M., Borghini F. (2011) Weak static and extremely low frequency magnetic fields affect in vitro pollen germination. The Scientific World Journal, 11, 875-890.
Bhardwaj J., Anand A., Nagarajan S. (2012) Biochemical and biophysical changes associated with magnetopriming in germinating cucumber seeds. Plant Physiology and Biochemistry, 57, 67-73.
Bilalis D.J., Katsenios N., Efthimiadou A., Karkanis A. (2012) Pulsed electromagnetic field: An organic compatible method to promote plant growth and yield in two corn types. Electromagnetic Biology and Medicine, 31, 333-343.
Boe A., Salunkhe D. (1963) Effects of magnetic fields on tomato ripening. Nature, 199, 91-92.
Bouly J.-P., Schleicher E., Dionisio-Sese M., Vandenbussche F., Van Der Straeten D., Bakrim N., Meier S., Batschauer A., Galland P., Bittl R. (2007) Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states. Journal of Biological Chemistry, 282, 9383-9391.
Cakmak T., Dumlupinar R., Erdal S. (2010) Acceleration of germination and early growth of wheat and bean seedlings grown under various magnetic field and osmotic conditions. Bioelectromagnetics, 31, 120-129.
Cakmak T., Cakmak Z.E., Dumlupinar R., Tekinay T. (2012) Analysis of apoplastic and symplastic antioxidant system in shallot leaves: Impacts of weak static electric and magnetic field. Journal of Plant Physiology, 169, 1066-1073.
Campbell G.S., Norman J.M. (1998) The light environment of plant canopies. In: Campbell G.S., Norman J.M. (Eds), An introduction to environmental biophysics. Springer, New York, pp 247-278.
Carbonell M., Florez M., Martínez E., Maqueda R., Amaya J. (2011) Study of stationary magnetic fields on initial growth of pea (Pisum sativum L.) seeds. Seed Science and Technology, 39, 673-679.
Çelik Ö., Atak Ç., Rzakulieva A. (2008) Stimulation of rapid regeneration by a magnetic field in paulownia node cultures. Journal of Central European Agriculture, 9, 297-304.
Çelik Ö., Büyükuslu N., Atak Ç., Rzakoulieva A. (2009) Effects of magnetic field on activity of superoxide dismutase and catalase in Glycine max (L.) Merr. Roots. Polish Journal of Environmental Studies, 18, 175-182.
Chadwick, D.G., Jensen, L. (1971) Detection of magnetic fields caused by groundwater and the correlation of such fields with water dowsing. Utah Water Research Laboratory, United States of America, 1-50.
Chen Y.-P., Li R., He J.-M. (2011) Magnetic field can alleviate toxicological effect induced by cadmium in mungbean seedlings. Ecotoxicology, 20, 760-769.
Crook M.B., Mitra S., Ané J.-M., Sadowsky M.J., Gyaneshwar P. (2013) Complete genome sequence of the sesbania symbiont and rice. Nucleic Acids Research, 1, 13-14.
Deamici K.M., Santos L.O., Costa J.A.V. (2019) Use of static magnetic fields to increase CO2 biofixation by the microalga Chlorella fusca. Bioresour Technol, 276(2019), 103-109.
De Souza A., García D., Sueiro L., Licea L., Porras E. (2005) Pre-sowing magnetic treatment of tomato seeds: Effects on the growth and yield of plants cultivated late in the season. Spanish Journal of Agricultural Research, 3, 113-122.
De Souza A., Garcí D., Sueiro L., Gilart F., Porras E., Licea L. (2006) Pre-sowing magnetic treatments of tomato seeds increase the growth and yield of plants. Bioelectromagnetics, 27, 247-257.
Dhawi F., Al-Khayri J.M. (2008) Proline accumulation in response to magnetic fields in date palm (Phoenix dactylifera L.). The Open Agriculture Journal, 2, 80-83.
Dhawi F., Al-Khayri J.M. (2009) Magnetic fields induce changes in photosynthetic pigments content in date palm (Phoenix dactylifera L.) seedlings. The Open Agriculture Journal, 3, 1-5.
Dhawi F., Al-Khayri J.M., Hassan E. (2009) Static magnetic field influence on elements composition in date palm (Phoenix dactylifera L.). Research Journal of Agriculture and Biological Sciences, 5, 161-166.
Dhiman S.K., Galland P. (2018) Effects of weak static magnetic fields on the gene expression of seedlings of Arabidopsis thaliana. Journal of Plant Physiology, 231, 9-18.
Dobson J. (2006) Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Therapy, 13, 283-287.
Dubois A.E.F., Boix Y.F., Alemán E.I., Beenaerts N., Cuypers A. (2018) Phytochemical determination of Solanum lycopersicum L. fruits irrigated with water treated with static magnetic field. Revista Cubana de Química, 30, 231-242.
Efthimiadou A., Katsenios N., Karkanis A., Papastylianou P., Triantafyllidis V., Travlos I., Bilalis D.J. (2014) Effects of presowing pulsed electromagnetic treatment of tomato seed on growth, yield, and lycopene content. The Scientific World Journal, 2014, 1-6.
El Sayed H.E.S.A. (2014) Impact of magnetic water irrigation for improve the growth, chemical composition and yield production of broad bean (Vicia faba L.) plant. Journal of experimental. Agriculture International, 4, 476-496.
El-Gindy A., Arafa Y., Abd El-Hady M., Mansour H., Abdelghany A. (2018) Effect of drip irrigation system salinity and magnetic water treatment on turnip yield and yield characters. World Wide Journal of Multidisciplinary Research and Development, 4, 89-96.
El-Zawily A.E.-S., Meleha M., El-Sawy M., El-Attar E.-H., Bayoumi Y., Alshaal T. (2019) Application of magnetic field improves growth, yield and fruit quality of tomato irrigated alternatively by fresh and agricultural drainage water. Ecotoxicology and Environmental Safety, 181, 248-254.
Eşitken A., Turan M. (2004) Alternating magnetic field effects on yield and plant nutrient element composition of strawberry (Fragaria x ananassa cv. Camarosa). Acta Agriculturae Scandinavica Section B Soil and Plant Science, 54, 135-139.
Fanous N.E., Mohamed A.A., Shaban K.A. (2017) Effect of magnetic treatment of irrigation ground water on soil salinity, nutrients, water productivity and yield fruit trees at sandy soil. Egyptian Journal of Soil Science, 57, 113-123.
Flórez M., Carbonell M., Martínez E. (2004) Early sprouting and first stages of growth of rice seeds exposed to a magnetic field. Electromagnetic Biology and Medicine, 23, 157-166.
Fomicheva V., Zaslavskii V., Govorun R., Danilov V. (1992) Dynamics of RNA and protein synthesis in the cells of the root meristem of the pea, lentil and flax. Biophysics, 37, 649-656.
Georgel P.T. (2005) Chromatin potentiation of the hsp70 promoter is linked to GAGA-factor recruitment. Biochemistry and Cell Biology, 83, 555-565.
Ghanati F., Payez A. (2015) Iron biofortification and activation of antioxidant system of wheat by static magnetic field. Iranian Journal of Science and Technology (Sciences), 39, 355-360.
Ghanati F., Abdolmaleki P., Vaezzadeh M., Rajabbeigi E., Yazdani M. (2007) Application of magnetic field and iron in order to change medicinal products of Ocimum basilicum. The Environmentalist, 27, 429-434.
Goodman E.M., Greenebaum B., Marron M.T. (1995) Effects of electromagnetic fields on molecules and cells. International Review of Cytology, 158, 279-338.
Govorun R., Danilov V., Fomicheva V., Belyavskaya N., Yu Zinchenko S. (1992) Influence of fluctuation of the geomagnetic field and its screening on the early phases of the development of higher plants. Biophysics, 37, 639-644.
Grissom, C. (1996) http://infoventures.com/emf/federal/rapid/nov95res/grissom.html (1 December 2020 ).
Haghighat N., Abdolmaleki P., Ghanati F., Behmanesh M., Payez A. (2014) Modification of catalase and MAPK in Vicia faba cultivated in soil with high natural radioactivity and treated with a static magnetic field. Journal of Plant Physiology, 171, 99-103.
Hamdy A., Khalifa S., Abdeen S. (2015) Effect of magnetic water on yield and fruit quality of some mandarin varieties. Annals of Agricultural Science, 53, 657-666.
Haq Z., Jamil Y., Irum S., Randhawa M.A., Iqbal M., Amin N. (2012) Enhancement in the germination, seedling growth and yield of radish (Raphanus sativus) using seed pre-sowing magnetic field treatment. Polish Journal of Environmental Studies, 21, 369-374.
Haq Z.U., Iqbal M., Jamil Y., Anwar H., Younis A., Arif M., Fareed M.Z., Hussain F. (2016) Magnetically treated water irrigation effect on turnip seed germination, seedling growth and enzymatic activities. Information Processing in Agriculture, 3, 99-106.
Harris S.-R., Henbest K.B., Maeda K., Pannell J.R., Timmel C.R., Hore P., Okamoto H. (2009) Effect of magnetic fields on cryptochrome-dependent responses in Arabidopsis thaliana. Journal of the Royal Society Interface, 6, 1193-1205.
Hasan M.M., Alharby H.F., Hajar A.S., Hakeem K.R. (2017) Leaf gas exchange, Fv/Fm ratio, ion content and growth conditions of the two Moringa species under magnetic water treatment. Pakistan Journal of Botany, 49, 921.
Hasan M., Alharby H., Hajar A., Hakeem K., Alzahrani Y., Arabia S. (2018) Effects of magnetized water on phenolic compounds, lipid peroxidation and antioxidant activity of Moringa species under drought stress. Journal of Animal and Plant Sciences, 28, 803.
Hasanuzzaman M., Bhuyan M., Zulfiqar F., Raza A., Mohsin S.M., Mahmud J.A., Fujita M., Fotopoulos V. (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants, 9, 681.
Hasenstein K.H., John S., Scherp P., Povinelli D., Mopper S. (2013) Analysis of magnetic gradients to study gravitropism. American Journal of Botany, 100, 249-255.
Hashem H.A., Hegab R.H. (2018) Effect of magnetic water and ascorbic acid on the productivity of Lavandula pubescens Decne and nutriens availability in soil under Siwa Oasis conditions. Middle East Journal, 7, 1072-1089.
Hassanpour H., Mansourkhaki M., Hekmati M. (2019) Effect of static magnetic field on the growth factors, antioxidant activity and anatomical responses of Silybum marianum seedlings. Journal of Plant Process and Function, 7, 9-15.
Hilal M., Hilal M. (2000a) Application of magnetic technologies in desert agriculture. I seed germination and seedling emergence of some crops in a saline calcareous soil. Egyptian Journal of Soil Science, 40, 413-422.
Hilal M., Hilal M. (2000b) Application of magnetic technologies in desert agriculture. II effect of magnetic treatments of irrigation water on salt distribution in olive and citrus fields and induced changes of ionic balance in soil and plant. Egyptian Journal of Soil Science, 40, 423-435.
Hozayn M., Qados A.A. (2010a) Magnetic water application for improving wheat (Triticum aestivum L.) crop production. Agriculture and Biology Journal of North America, 1, 677-682.
Hozayn M., Qados A.A. (2010b) Irrigation with magnetized water enhances growth, chemical constituent and yield of chickpea (Cicer arietinum L.). Agriculture and Biology Journal of North America, 1, 671-676.
Hozayn M., El-Monem A., Qados A.A., El-Hameid E. (2011) Response of some food crops to irrigation with magnetized water under greenhouse conditions. Australian Journal of Basic and Applied Sciences, 5, 29-36.
Hozayn M., El-Monem A., Abdelraouf R., Abdalla M. (2013) Does magnetic water affect water use efficiency, quality and yield of sugar beet (Beta vulgaris L.) plant under arid regions conditions? Journal of Agronomy, 12, 1-10.
Hozayn M., Abdallha M., El-Monem A.A., El-Saady A., Darwish M. (2016) Applications of magnetic technology in agriculture: a novel tool for improving crop productivity (1): Canola. African Journal of Agricultural Research, 11, 441-449.
Hozayn, M., Abdel-Monem, A.A., QADOS, A.M.S. (2017) Irrigation with magnetized water, a novel tool for improving crop production in egypt. Plurimondi, http://plurimondi.poliba.it/index.php/Plurimondi/article/view/22 (10 February 2022).
Hussein H.F., Hail R.C.A., Jabail W.A. (2012) Effect of magnetic field on seed germination of wheat. Walailak Journal of Science and Technology, 9, 341-345.
Jalilzadeh E., Jamei R., Hosseini Sarghein S. (2018) Magnetic field and silver nanoparticles induced changes on phenolic compound and oxidative status of marigold seedlings. Journal of Plant Physiology and Breeding, 8, 75-88.
Jamil Y., Ahmad M.R. (2012) Effect of pre-sowing magnetic field treatment to garden pea (Pisum sativum L.) seed on germination and seedling growth. Pakistan Journal of Botany, 44, 1851-1856.
Jan L., Fefer D., Košmelj K., Gaberščik A., Jerman I. (2015) Geomagnetic and strong static magnetic field effects on growth and chlorophyll a fluorescence in Lemna minor. Bioelectromagnetics, 36, 190-203.
Jin Y., Guo W., Hu X., Liu M., Xu X., Hu F., Lan Y., Lv C., Fang Y., Liu M. (2019) Static magnetic field regulates Arabidopsis root growth via auxin signaling. Scientific Reports, 9, 1-14.
Jouni F.J., Abdolmaleki P., Ghanati F. (2012) Oxidative stress in broad bean (Vicia faba L.) induced by static magnetic field under natural radioactivity. Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 741, 116-121.
Jovanić B., Sarvan M. (2004) Permanent magnetic field and plant leaf temperature. Electromagnetic Biology and Medicine, 23, 1-5.
Kanany R., El-Naqma K., Othman M. (2017) Effect of magnetic irrigation water and nitrogen fertilizer forms on maize (Zea mays L.) growth, yield and nitrogen utilization rate. Journal of Soil Sciences and Agricultural Engineering, 8, 383-389.
Kareem N.S.A. (2018) Evaluation of magnetizing irrigation water impacts on the enhancement of yield and water productivity for some crops. Journal of Agricultural Science and Technology A, 8, 271-283.
Kataria S., Baghel L., Guruprasad K. (2017) Pre-treatment of seeds with static magnetic field improves germination and early growth characteristics under salt stress in maize and soybean. Biocatalysis and Agricultural Biotechnology, 10, 83-90.
Kataria S., Baghel L., Jain M., Guruprasad K. (2019) Magnetopriming regulates antioxidant defense system in soybean against salt stress. Biocatalysis and Agricultural Biotechnology, 18, 101090.
Kazemi Khaledi N., Saadatmand S., Khavari-Nejad R.A., Nejadsattari T. (2019) Responses of alfalfa influenced by magnetic field and rhizobial inoculant. Iranian Journal of Plant Physiology, 9, 2963-2969.
Kiranmai V. (1994) Induction of mutations by magnetic field for the improvement of sunflower. Journal of Applied Physics, 75, 7181.
Kleine T., Kindgren P., Benedict C., Hendrickson L., Strand A. (2007) Genome-wide gene expression analysis reveals a critical role for CRYPTOCHROME1 in the response of Arabidopsis to high irradiance. Plant Physiology, 144, 1391-1406.
Kordas L. (2002) The effect of magnetic field on growth, development and the yield of spring wheat. Polish Journal of Environmental Studies, 11, 527-530.
Kronenberg, K. (2005) Magneto hydrodynamics: The effect of magnets on fluids GMX international. 2nd scientific conference of agricultural sciences, College of Agriculture, University of Basrah, Iraq.
Kursevich N., Travkin M. (1973) Effects of magnetic fields with different intensities on some enzymes' activities in barley seedlings. Effects of natural and weak artificial magnetic fields on biological objects. Belgorod Teachers Training College Publishing, Belgorod, Russia, pp 102-104.
Leal A., Tarsikka P. (2017) The effect on solubility and pH of sodium chloride solution by magnetic field. International Journal of Environment, Agriculture and Biotechnology, 2, 238933.
Li A. (2000) Effect of gradient magnetic field on growth of stem pearls of Dioscorea opposita during seedling stage. China Journal of Chinese Materia Medica, 25, 341-343.
Liedvogel M., Mouritsen H. (2010) Cryptochromes - A potential magnetoreceptor: What do we know and what do we want to know? Journal of the Royal Society Interface, 7, S147-S162.
Liu X., Zhu H., Wang L., Bi S., Zhang Z., Meng S., Zhang Y., Wang H., Song C., Ma F. (2019) The effects of magnetic treatment on nitrogen absorption and distribution in seedlings of Populus× euramericana ‘Neva'under NaCl stress. Scientific Reports, 9, 1-14.
Maffei M.E. (2014) Magnetic field effects on plant growth, development, and evolution. Frontiers in Plant Science, 5, 445.
Mahajan T.S., Pandey O.P. (2014) Magnetic-time model at off-season germination. International Agrophysics, 28, 57-62.
Maheshwari B.L., Grewal H.S. (2009) Magnetic treatment of irrigation water: Its effects on vegetable crop yield and water productivity. Agricultural Water Management, 96, 1229-1236.
Majd A., Farzpourmachiani S. (2013) Effect of magnetic fields on growth and anatomical structure of Vicia sativa L. Global Journal of Plant Ecophysiology, 3, 87-95.
Majd A., Farzpourmachiani S., Dorranian D. (2010) Evaluation of the effect of magnetic fields on seed germination and seedling ontogenesis of vetch (Vicia sativa L.). Journal of Plant Science and Research, 18, 1-9.
Martinez E., Carbonell M.V., Amaya J.M. (2000) A static magnetic field of 125 mT stimulates the initial growth stages of barley (Hordeum vulgare L.). Electro- and Magnetobiology, 19, 271-277.
Massah J., Dousti A., Khazaei J., Vaezzadeh M. (2019) Effects of water magnetic treatment on seed germination and seedling growth of wheat. Journal of Plant Nutrition, 42, 1283-1289.
Matwijczuk A., Kornarzynski K., Pietruszewski S. (2012) Effect of magnetic field on seed germination and seedling growth of sunflower. International Agrophysics, 26, 271-278.
Michalak I., Lewandowska S., Niemczyk K., Detyna J., Bujak H., Arik P., Bartniczak A. (2019) Germination of soybean seeds exposed to the static/alternating magnetic field and algal extract. Engineering in Life Sciences, 19, 986-999.
Migahid M., Elghobashy R., Bidak L., Amin A. (2019) Priming of Silybum marianum (L.) Gaertn seeds with H2O2 and magnetic field ameliorates seawater stress. Heliyon, 5, e01886.
Milavec M., Ravnikar M., Kovač M. (2001) Peroxidases and photosynthetic pigments in susceptible potato infected with potato virus YNTN. Plant Physiology and Biochemistry, 39, 891-898.
Moussa H.R. (2011) The impact of magnetic water application for improving common bean (Phaseolus vulgaris L.) production. New York Science Journal, 4, 15-20.
Mridha N., Chattaraj S., Chakraborty D., Anand A., Aggarwal P., Nagarajan S. (2016) Pre-sowing static magnetic field treatment for improving water and radiation use efficiency in chickpea (Cicer arietinum L.) under soil moisture stress. Bioelectromagnetics, 37, 400-408.
Mulook A.-K., Abdullatif B., Nabila A.-A. (2011) Effects of magnetically treated water on water status, chlorophyll pigments and some elements content of jojoba (Simmondsia chinensis L.) at different growth stages. African Journal of Environmental Science and Technology, 5, 722-731.
Nanushyan E.R., Murashov V.V. (2001) Plant meristem cell response to stress factors of the geomagnetic field (GMF) fluctuations. In: Plant under environmental stress. Friendship University of Russia, Moscow, pp 204-205.
Naseer H., Shaukat K., Zahra N., Hafeez M.B., Raza A., Nizar M., Qazi M.A., Ali Q., Al-Huqail A.A., Siddiqui M.H., Ali H.M. (2022) Appraisal of foliar spray of iron and salicylic acid under artificial magnetism on morpho-physiological attributes of pea (Pisum sativum L.) plants. PLoS One, 17, e0265654.
Nasher S.H. (2008) The effect of magnetic water on growth of chick-pea seeds. Engineering and Technology, 26, 4.
Naz A., Jamil Y., Iqbal M., Ahmad M.R., Ashraf M.I., Ahmad R. (2012) Enhancement in the germination, growth and yield of okra (Abelmoschus esculentus) using pre-sowing magnetic treatment of seeds. Indian Journal of Biochemistry and Biophysics, 49, 211-214.
Nechiporenko G., Dobrovolski M., Novitsky I. (1973) The effect of weak permanent magnetic field on the content of main cations in onion organs and in radish plants of basic magnetically-oriented types. Plant Under Environmental Stress. Publishing House of Peoples ‘Friendship University of Russia, Moscow, Russia, pp 205-206.
Negishi Y., Hashimoto A., Tsushima M., Dobrota C., Yamashita M., Nakamura T. (1999) Growth of pea epicotyl in low magnetic field implication for space research. Advances in Space Research, 23, 2029-2032.
Novitskaya G., Tulinova E., Kocheshkova T., Novitsky I.Y. (2001) The effect of weak permanent magnetic field on cotyledon emergence and neutral lipid content in 5-day-old radish seedlings. Plant under environmental stress. Publishing House of Peoples' Friendship University of Russia, Moscow, Russia, pp 212-213.
Novitskaya G., Molokanov D., Dobrovol'skii M., Serdyukov Y.A., Novitskii Y.I. (2017) Effect of alternating magnetic field on ontogenesis and morphophysiological characteristics of radish plants of different magnetic orientation. Russian Journal of Plant Physiology, 64, 431-437.
Novitskii Y.I., Novitskaya G.V., Serdyukov Y.A. (2014) Lipid utilization in radish seedlings as affected by weak horizontal extremely low frequency magnetic field. Bioelectromagnetics, 35, 91-99.
Nurbaity A., Nuraini A., Agustine E., Solihin M., Setiawan A., Mbusango A. (2019) Enhanced seedling germination and growth of sorghum through pre-sowing seed magnetic field treatment. IOP conference series: Earth and environmental science. IOP Publishing Ltd, Bandung, pp 012101.
Nyakane N.E., Markus E., Sedibe M. (2019) The effects of magnetic fields on plant growth: a comprehensive review. International Journal of Food Engineering, 5, 79-87.
Oldacay S., Erdem G. (2002) Evaluation of chlorophyll content and peroxidase activities in Helianthus annuus genotypes exposed to radiation and magnetic fields. Journal of Applied Sciences, 2, 934-937.
Parola A.H., Kost D., Katsir G., Monselise E.B.-I., Cohen-Luria R. (2005) Radical scavengers suppress low frequency EMF enhanced proliferation in cultured cells and stress effects in higher plants. The Environmentalist, 25, 103-111.
Partch C.L., Sancar A. (2005) Photochemistry and photobiology of cryptochrome blue-light photopigments: the search for a photocycle. Photochemistry and Photobiology, 81, 1291-1304.
Paul A.-L., Ferl R.J., Meisel M.W. (2006) High magnetic field induced changes of gene expression in Arabidopsis. BioMagnetic Research and Technology, 4, 1-10.
Payez A., Ghanati F., Behmanesh M., Abdolmaleki P., Hajnorouzi A., Rajabbeigi E. (2013) Increase of seed germination, growth and membrane integrity of wheat seedlings by exposure to static and a 10-KHz electromagnetic field. Electromagnetic Biology and Medicine, 32, 417-429.
Peyvandi M., Kazemi K.N., Arbabian S. (2013) The effects of magnetic fields on growth and enzyme activities of Helianthus annuus L. seedlings. Iranian Journal of Plant Physiology, 3, 717-724.
Piacentini M.P., Fraternale D., Piatti E., Ricci D., Vetrano F., Dachà M., Accorsi A. (2001) Senescence delay and change of antioxidant enzyme levels in Cucumis sativus L. etiolated seedlings by ELF magnetic fields. Plant Science, 161, 45-53.
Pietruszewski S. (1996) Effects of magnetic biostimulation of wheat seeds on germination, yield and proteins. International Agrophysics, 10, 51-55.
Pietruszewski S., Kania K. (2010) Effect of magnetic field on germination and yield of wheat. International Agrophysics, 24, 297-302.
Pingping Z., Ruochun Y., Zhiyou C., Lifang W., Zengliang Y. (2007) Genotoxic effects of superconducting static magnetic fields (SMFs) on wheat (Triticum aestivum) pollen mother cells (PMCs). Plasma Science and Technology, 9, 241.
Pintilie M., Oprica L., Surleac M., Dragut-Ivan C., Creanga D., Artenie V. (2006) Enzyme activity in plants treated with magnetic liquid. Romanian Journal of Physics, 51, 239.
Pittman U., Carefoot J., Ormrod D. (1979) Effect of magnetic seed treatment on amylolytic activity of quiescent and germinating barley and wheat seeds. Canadian Journal of Plant Science, 59, 1007-1011.
Podleśna A., Bojarszczuk J., Podleśny J. (2019) Effect of pre-sowing magnetic field treatment on some biochemical and physiological processes in faba bean (Vicia faba L. spp. minor). Journal of Plant Growth Regulation, 38, 1153-1160.
Podleśny J., Podleśna A., Gładyszewska B., Bojarszczuk J. (2021) Effect of pre-sowing magnetic field treatment on enzymes and phytohormones in pea (Pisum sativum L.) seeds and seedlings. Agronomy, 11, 494.
Poinapen D., Toppozini L., Dies H., Brown D.C., Rheinstädter M.C. (2013) Static magnetic fields enhance lipid order in native plant plasma membrane. Soft Matter, 9, 6804-6813.
Polovinkina E., Kal'yasova E., Sinitsina Y.V., Veselov A. (2011) Effect of weak pulse magnetic fields on lipid peroxidation and activities of antioxidant complex components in pea chloroplasts. Russian Journal of Plant Physiology, 58, 1069-1073.
Pooam M., Arthaut L.-D., Burdick D., Link J., Martino C.F., Ahmad M. (2019) Magnetic sensitivity mediated by the Arabidopsis blue-light receptor cryptochrome occurs during flavin reoxidation in the dark. Planta, 249, 319-332.
Qados A., Hozayn M. (2010) Magnetic water technology, a novel tool to increase growth, yield and chemical constituents of lentil (Lens esculenta) under greenhouse condition. American-Eurasian Journal of Agricultural & Environmental Sciences, 7, 457-462.
Răcuciu M., Oancea S. (2018) Impact of 50 Hz magnetic field on the content of polyphenolic compounds from blackberries. Bulgarian Chemical Communications, 50, 393-397.
Racuciu M., Creanga D., Amoraritei C. (2007) Biochemical changes induced by low frequency magnetic field exposure of vegetal organisms. Romanian Journal of Physics, 52, 601-606.
Racuciu M., Creanga D., Horga I. (2008) Plant growth under static magnetic field influence. Romanian Journal of Physics, 53, 353-359.
Racuciu M., Miclăuş S., Creangă D.-E. (2009) The response of plant tissues to magnetic fluid and electromagnetic exposure. Romanian Journal of Biophysics, 19, 73-83.
Radhakrishnan R., Kumari B.D.R. (2012) Pulsed magnetic field: A contemporary approach offers to enhance plant growth and yield of soybean. Plant Physiology and Biochemistry, 51, 139-144.
Rajabbeigi E., Ghanati F., Abdolmaleki P., Payez A. (2013) Antioxidant capacity of parsley cells (Petroselinum crispum L.) in relation to iron-induced ferritin levels and static magnetic field. Electromagnetic Biology and Medicine, 32, 430-441.
Rakosy-Tican L., Aurori C., Morariu V. (2005) Influence of near null magnetic field on in vitro growth of potato and wild Solanum species. Bioelectromagnetics, 26, 548-557.
Raza A. (2022) Metabolomics: a systems biology approach for enhancing heat stress tolerance in plants. Plant Cell Reports, 41, 741-763.
Raza A., Hussain S., Javed R., Hafeez M.B., Hasanuzzaman M. (2021a) Antioxidant defense systems and remediation of metal toxicity in plants. In: Hasanuzzaman M. (Ed), Approaches to the remediation of inorganic pollutants, Springer, Singapore, pp 91-124.
Raza A., Su W., Hussain M.A., Mehmood S.S., Zhang X., Cheng Y., Zou X., Lv Y. (2021b) Integrated analysis of metabolome and transcriptome reveals insights for cold tolerance in rapeseed (Brassica napus L.). Frontiers. Plant Science, 12, 721681.
Regoli F., Gorbi S., Machella N., Tedesco S., Benedetti M., Bocchetti R., Notti A., Fattorini D., Piva F., Principato G. (2005) Pro-oxidant effects of extremely low frequency electromagnetic fields in the land snail Helix aspersa. Free Radical Biology and Medicine, 39, 1620-1628.
Reina F.G., Pascual L.A. (2001) Influence of a stationary magnetic field on water relations in lettuce seeds. Part I: theoretical considerations. Bioelectromagnetics, 22, 589-595.
Reina F.G., Pascual L.A., Fundora I.A. (2001) Influence of a stationary magnetic field on water relations in lettuce seeds. Part II: experimental results. Bioelectromagnetics, 22, 596-602.
Rezaei, A., Ghanati, F., Behmanesh, M. (2010) Static magnetic field improved salicylic acid effect on taxol production in suspension cultured hazel (Corylus avellana) cells. In 6th International Workshop on Biological Effects of Electromagnetic Fields. Bodrum, 10th - 14th October 2010. pp 70-71.
Ritz T., Adem S., Schulten K. (2000) A model for photoreceptor-based magnetoreception in birds. Biophysical Journal, 78, 707-718.
Rivero D.S., Aguilar J.O., Mahecha O.M., Perilla P.V., Acevedo P., Navarro A.S. (2016) The effect of magnetic and electromagnetic fields on the morpho-anatomical characteristics of corn (Zea mays L.) during biomass production. Chemical Engineering Transactions, 50, 415-420.
Rochalska M. (1997) The influence of frequent magnetic field on germination of maize seeds at the low temperature. Roczniki Nauk Rolniczych/A-Produkcja Roslinna, 112, 91-100.
Rochalska M. (2005) Influence of frequent magnetic field on chlorophyll content in leaves of sugar beet plants. Nukleonika, 50, 25-28.
Rochalska M. (2008) The influence of low frequency magnetic field upon cultivable plant physiology. Nukleonika, 53, 17-20.
Rochalska M., Grabowska K. (2007) Influence of magnetic fields on the activity of enzymes: Alpha- and beta-amylase and glutathione S-transferase [GST] in wheat plants. International Agrophysics, 21, 185-188.
Roshandel P., Azimian F. (2015) Effects of magnetic field on growth and antioxidant capacity of Artemisia aucheri in normal or saline conditions. Biological Forum, 2015, 1095-1103.
Sabagh A.E., Mbarki S., Hossain A., Iqbal M.A., Islam M.S., Raza A., Llanes A., Reginato M., Rahman M.A., Mahboob W., Singhal R.K., Kumari A., Rajendran K., Wasaya A., Javed T., Shabbir R., Rahim J., Barutçular C., Habib U., Rahman M., Raza M.A., Ratnasekera D., Konuskan Ö., Hossain M.A., Meena V.S., Ahmed S., Ahmad Z., Mubeen M., Singh K., Skalicky M., Brestic M., Sytar O., Karademir E., Karademir C., Erman M., Farooq M. (2021) Potential role of plant growth regulators in administering crucial processes against abiotic stresses. Frontiers in Agronomy, 3, 648694.
Sadeghipour O. (2016) The effect of magnetized water on physiological and agronomic traits of cowpea (Vigna unguiculata L.). International Journal of Research in Chemical, Metallurgical and Civil Engineering, 3, 195-198.
Sakhnini L. (2007) Influence of Ca2+ in biological stimulating effects of AC magnetic fields on germination of bean seeds. Journal of Magnetism and Magnetic Materials, 310, e1032-e1034.
Scaiano J., Cozens F.L., McLean J. (1994) Model for the rationalization of magnetic field effects in vivo. Application of the radical-pair mechanism to biological systems. Photochemistry and Photobiology, 59, 585-589.
Scaiano J., Cozens F., Mohtat N. (1995) Development of a model and application of the radical pair mechanism to radicals in micelles. Photochemistry and Photobiology, 62, 818-829.
Scherer F., Anton M., Schillinger U., Henke J., Bergemann C., Krüger A., Gänsbacher B., Plank C. (2002) Magnetofection: Enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Therapy, 9, 102-109.
Selim A.-F.H., El-Nady M.F. (2011) Physio-anatomical responses of drought stressed tomato plants to magnetic field. Acta Astronautica, 69, 387-396.
Selim A.-F.H., Selim D.A. (2019) Physio-biochemical behaviour, water use efficiency and productivity of wheat plants exposed to magnetic field. Journal of Plant Production, 10, 185-191.
Sen A., Alikamanoglu S. (2014) Effects of static magnetic field pretreatment with and without PEG 6000 or NaCl exposure on wheat biochemical parameters. Russian Journal of Plant Physiology, 61, 646-655.
Serdyukov Y.A., Novitskii Y.I. (2013) Impact of weak permanent magnetic field on antioxidant enzyme activities in radish seedlings. Russian Journal of Plant Physiology, 60, 69-76.
Shabrangi A., Majd A. (2009) Effect of magnetic fields on growth and antioxidant systems in agricultural plants. PIERS Proceedings, Beijing, China, pp 23-27.
Shabrangi A., Majd A., Sheidai M. (2011) Effects of extremely low frequency electromagnetic fields on growth, cytogenetic, protein content and antioxidant system of Zea mays L. African Journal of Biotechnology, 10, 9362-9369.
Shang G.-M., Wu J.-C., Yuan Y.-J. (2004) Improved cell growth and Taxol production of suspension-cultured Taxus chinensis var. mairei in alternating and direct current magnetic fields. Biotechnology Letters, 26, 875-878.
Shawanroy. (2012) Electromagnetic Field. https://www.slideshare.net/shawanroy/electromagnetic-field-emf (accessed 1 July 2020).
Shine M., Guruprasad K., Anand A. (2011) Enhancement of germination, growth, and photosynthesis in soybean by pre-treatment of seeds with magnetic field. Bioelectromagnetics, 32, 474-484.
Shine M., Guruprasad K., Anand A. (2012) Effect of stationary magnetic field strengths of 150 and 200 mT on reactive oxygen species production in soybean. Bioelectromagnetics, 33, 428-437.
Shine M., Kataria S., Guruprasad K., Anand A. (2017) Enhancement of maize seeds germination by magnetopriming in perspective with reactive oxygen species. Journal of Agricultural and Crop Research, 5, 66-76.
Sinclair T.R., Rufty T.W., Lewis R.S. (2019) Increasing photosynthesis: Unlikely solution for world food problem. Trends in Plant Science, 24, 1032-1039.
Sleptsov I., Shashurin M., Zhuravskaya A. (2019) Short-term impact of a permanent magnetic field on the physiological, morphological, and Biochemical characteristics of Amaranthus retroflexus, Agastache rugosa, and Thlaspi arvense seedlings. Russian Journal of Plant Physiology, 66, 95-101.
Soleymani M., Ghanati F., Mohamadalikhani S., Zare Maivan H. (2017) Improvement of antioxidant enzymes activity of Zea mays L. after treatment with magnetized water. Developmental Biology, 9, 27-39.
Solov'yov I.A., Schulten K. (2012) Reaction kinetics and mechanism of magnetic field effects in cryptochrome. Journal of Physical Chemistry B, 116, 1089-1099.
Srikanth D., Rai P.K., Khandka S., Jyothi G. (2018) Influence of magnetic and electric field on germination attributes of chilli (Capsicum annum L.) seeds. Indian Journal of Pure & Applied Biosciences, 6, 496-501.
Stange B., Rowland R., Rapley B., Podd J. (2002) ELF magnetic fields increase amino acid uptake into Vicia faba L. roots and alter ion movement across the plasma membrane. Bioelectromagnetics, 23, 347-354.
Strzałka K., Kostecka-Gugała A., Latowski D. (2003) Carotenoids and environmental stress in plants: Significance of carotenoid-mediated modulation of membrane physical properties. Russian Journal of Plant Physiology, 50, 168-173.
Surendran U., Sandeep O., Mammen G., Joseph E. (2013) A novel technique of magnetic treatment of saline and hard water for irrigation and its impact on cow pea growth and water properties. International Journal of Agriculture, Environment and Biotechnology, 6, 85-92.
Surendran U., Sandeep O., Joseph E. (2016) The impacts of magnetic treatment of irrigation water on plant, water and soil characteristics. Agricultural Water Management, 178, 21-29.
Sztafrowski D., Aksamit-Stachurska A., Kostyn K., Mackiewicz P., Łukaszewicz M. (2017) Electromagnetic field seems to not influence transcription via CTCT motif in three plant promoters. Frontiers in Plant Science, 8, 178.
Taghizadeh M., Nasibi F., Kalantari K.M., Ghanati F. (2019) Evaluation of secondary metabolites and antioxidant activity in Dracocephalum polychaetum Bornm. Cell suspension culture under magnetite nanoparticles and static magnetic field elicitation. Plant Cell, Tissue and Organ Culture, 136, 489-498.
Tahir N.A.-R., Karim H.F.H. (2010) Impact of magnetic application on the parameters related to growth of chickpea (Cicer arietinum L.). Jordan Journal of Biological Sciences, 3, 175-184.
Taia W., Kotbi A. (2007) Effect of magnetism on some morphological characters in sweet basil Ocimum basilicum L.(Lamiaceae). Catrina, 2, 163-174.
Tenforde T. (1996) Interaction of ELF magnetic fields with living systems. In: Polk C., Postow E. (Eds), Handbook of biological effects of electromagnetic fields. CRC Pres, Boca Raton. pp 185-230.
Trewavas A.J., Malhó R. (1998) Ca2+ signalling in plant cells: The big network! Current Opinion in Plant Biology, 1, 428-433.
Turker M., Temirci C., Battal P., Erez M.E. (2007) The effects of an artificial and static magnetic field on plant growth, chlorophyll and phytohormone levels in maize and sunflower plants. Phyton; Annales Rei Botanicae, 46, 271-284.
Vaidya R., Bokha D., Patel K. (2017) Study of pre-sowing magnetic treatment on the germination, growth and yield of okra (Abelmoschus esculentus) and chilli (Capsicum annum L.) seeds. Indian Journal of Applied Research, 7, 7-9.
Vashisth A., Nagarajan S. (2008) Exposure of seeds to static magnetic field enhances germination and early growth characteristics in chickpea (Cicer arietinum L.). Bioelectromagnetics, 29, 571-578.
Vashisth A., Nagarajan S. (2010) Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. Journal of Plant Physiology, 167, 149-156.
Wojcik S. (1995) Effect of the pre-sowing magnetic biostimulation of the buckwheat seeds on the yield and chemical composition of buckwheat grain. Current Advances in Buckwheat Research, 93, 667-674.
Worzack, M., Wadelton, K., Davis, J.C. Paul A.L., Meisel M.W. (2005) http://reu.magnet.fsu.edu/_files/program/2005/documents.Worczak.doc (10 November 2018).
Xia L., Guo J. (2000) Effect of magnetic field on peroxidase activation and isozyme in Leymus chinensis. Journal of Applied Ecology, 11, 699-702.
Xu C., Yin X., Lv Y., Wu C., Zhang Y., Song T. (2012) A near-null magnetic field affects cryptochrome-related hypocotyl growth and flowering in Arabidopsis. Advances in Space Research, 49, 834-840.
Xu C., Wei S., Lu Y., Zhang Y., Chen C., Song T. (2013) Removal of the local geomagnetic field affects reproductive growth in Arabidopsis. Bioelectromagnetics, 34, 437-442.
Xu C., Lv Y., Chen C., Zhang Y., Wei S. (2014) Blue light-dependent phosphorylations of cryptochromes are affected by magnetic fields in Arabidopsis. Advances in Space Research, 53, 1118-1124.
Xu C., Yu Y., Zhang Y., Li Y., Wei S. (2017) Gibberellins are involved in effect of near-null magnetic field on Arabidopsis flowering. Bioelectromagnetics, 38, 1-10.
Xu C., Zhang Y., Yu Y., Li Y., Wei S. (2018) Suppression of Arabidopsis flowering by near-null magnetic field is mediated by auxin. Bioelectromagnetics, 39, 15-24.
Yamashita M., Tomita-Yokotani K., Hashimoto H., Takai M., Tsushima M., Nakamura T. (2004) Experimental concept for examination of biological effects of magnetic field concealed by gravity. Advances in Space Research, 34, 1575-1578.
Yano A., Ohashi Y., Hirasaki T., Fujiwara K. (2004) Effects of a 60 Hz magnetic field on photosynthetic CO2 uptake and early growth of radish seedlings. Bioelectromagnetics, 25, 572-581.
Yusuf K.O., Adeleye A.A. (2018) Effect of magnetic treatment of irrigation water on growth and yield of maize under different water deficit conditions. FUOYE Journal of Engineering and Technology, 3, 83-87.
Yusuf K.O., Ogunlela A.O. (2017) Effects of deficit irrigation on the growth and yield of tomato irrigated with magnetized water. Environmental Research, Engineering and Management, 73, 59-68.
Zahri F., Najafi S. (2019) Study of antioxidant activity and biochemical characteristics of Phaseolus lanatus in the presence of silver nanoparticles and magnetic field. Plant Archives, 19, 579-582.
Zaidi S., Khatoon S., Imran M., Zohair S. (2013) Effects of electromagnetic fields (created by high tension lines) on some species of family Mimosaceae, Molluginaceae, Nyctaginaceae and Papilionaceae from Pakistan -V. Pakistan Journal of Botany, 45, 1857-1864.
Zaporozhan V., Ponomarenko A. (2010) Mechanisms of geomagnetic field influence on gene expression using influenza as a model system: Basics of physical epidemiology. International Journal of Environmental Research and Public Health, 7, 938-965.
Zareei E., Zaare-Nahandi F., Oustan S., Hajilou J. (2019) Effects of magnetic solutions on some biochemical properties and production of some phenolic compounds in grapevine (Vitis vinifera L.). Scientia Horticulturae, 253, 217-226.
Zdyrska M.M., Kornarzynski K., Pietruszewski S., Gagos M. (2016) Stimulation with a 130-mT magnetic field improves growth and biochemical parameters in lupin (Lupinus angustifolius L.). Turkish Journal of Biology, 40, 699-705.
Zhang R., Meng Z., Abid M.A., Zhao X. (2019) Novel pollen magnetofection system for transformation of cotton plant with magnetic nanoparticles as gene carriers. In: Zhang B. (Ed.), Transgenic cotton. Humana, New York, NY, USA, pp 47-54.
Zhao X., Meng Z., Wang Y., Chen W., Sun C., Cui B., Cui J., Yu M., Zeng Z., Guo S. (2017) Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nature Plants, 3, 956-964.
Zhu H., Conte F., Green C.B. (2003) Nuclear localization and transcriptional repression are confined to separable domains in the circadian protein CRYPTOCHROME. Current Biology, 13, 1653-1658.
Zlotopolski V. (2017) Magnetic treatment reduces water usage in irrigation without negatively impacting yield, photosynthesis and nutrient uptake in lettuce. International Journal of Applied Agricultural Sciences, 3, 117-122.
فهرسة مساهمة: Keywords: Germination; magnetic field (MF); magnetized water; seedling physiology; yield
المشرفين على المادة: 0 (Glia Maturation Factor)
تواريخ الأحداث: Date Created: 20220805 Date Completed: 20221216 Latest Revision: 20221221
رمز التحديث: 20240628
DOI: 10.1111/plb.13459
PMID: 35929950
قاعدة البيانات: MEDLINE
الوصف
تدمد:1438-8677
DOI:10.1111/plb.13459