دورية أكاديمية

Gene profiling in dorso-ventral patterning of mouse tongue development.

التفاصيل البيبلوغرافية
العنوان: Gene profiling in dorso-ventral patterning of mouse tongue development.
المؤلفون: Kim TY; Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, 41940, Daegu, Korea., Jung HG; Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, 41940, Daegu, Korea., Pokharel E; Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, 41940, Daegu, Korea., Kim JY; Department of Dental Hygiene, Gachon University, Incheon, Korea., Ha JH; Department of Conservative Dentistry, School of Dentistry, Kyungpook National University, Daegu, Korea., An SY; Department of Oral and Maxillofacial Radiology, School of Dentistry, Kyungpook National University, Daegu, Korea., An CH; Department of Oral and Maxillofacial Radiology, School of Dentistry, Kyungpook National University, Daegu, Korea., Sohn WJ; Pre-Major of Cosmetics and Pharmaceutics, Daegu Haany University, Gyeongsan, Korea., Jung JK; Department of Oral Medicine, School of Dentistry, Kyungpook National University, Daegu, Korea., Aryal YP; Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, 41940, Daegu, Korea. yparyal86@gmail.com., Kim JY; Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, 41940, Daegu, Korea. jykim91@knu.ac.kr.
المصدر: Genes & genomics [Genes Genomics] 2022 Oct; Vol. 44 (10), pp. 1181-1189. Date of Electronic Publication: 2022 Aug 11.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: The Korean Society of Genetics Country of Publication: Korea (South) NLM ID: 101481027 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2092-9293 (Electronic) Linking ISSN: 19769571 NLM ISO Abbreviation: Genes Genomics Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Seoul : The Korean Society of Genetics, 2008-
مواضيع طبية MeSH: Angiopoietin-2* , Calcium*, Animals ; Mice ; Organogenesis ; RNA ; Tongue
مستخلص: Background: The tongue is a muscular fleshy organ in the oral cavity that is anatomically divided into the dorsal, ventral, anterior, and posterior part. The intricate tissue organisation and diverse origins of the tongue make it a complex organ of the oral cavity.
Objectives: To reveal the signalling molecules involved in the formation of the dorsal and ventral parts of the tongue through microarray analysis.
Methods: Dorsal and ventral tongue tissues were isolated from embryonic day 14 mice by micro-dissection. RNA was extracted from the dorsal and ventral tongue tissues separately for microarray analysis. Microarray data were confirmed by quantitative reverse transcription polymerase chain reaction and whole-mount in situ hybridisation.
Results: Microarray analysis revealed expression of 33,793 genes. Of these, 931 genes were found to be equally expressed in both the dorsal and ventral parts of the tongue. On limiting the fold-change cut-off to over 1.5-fold, 725 genes were expressed over 1.5-fold in the ventral part and 1,672 in the dorsal part of the tongue. The qPCR and whole-mount in situ hybridisation revealed the expressions of angiopoietin 2 (Angpt2), fibroblast growth factor 18 (Fgf18), mesenchyme homeobox gene1 (Meox1), and SPARC-related modular calcium binding 2 (Smoc2) in the ventral part of the tongue.
Conclusions: Numerous signalling molecules can be selected from our microarray results to examine their roles in tongue development and disease model systems. In the near future, the selection of candidate genes and their functional evaluations will be performed through loss- and gain-of-function mutation studies.
(© 2022. The Author(s) under exclusive licence to The Genetics Society of Korea.)
References: Adhikari N, Neupane S, Roh J et al (2018) Gene profiling involved in fate determination of salivary gland type in mouse embryogenesis. Genes Genomics 40:1081–1089. https://doi.org/10.1007/s13258-018-0715-z. (PMID: 10.1007/s13258-018-0715-z)
Aryal YP, Lee E-S, Kim T-Y et al (2020) Stage-specific expression patterns of ER stress-related molecules in mice molars: Implications for tooth development. Gene Expr Patterns 37:119130. https://doi.org/10.1016/j.gep.2020.119130. (PMID: 10.1016/j.gep.2020.11913032758541)
Dale BA, Salonen J, Jones AH (1990) New Approaches And Concepts in The Study of Differentiation of Oral Epithelia. Crit Rev Oral Biol Med 1:167–190. https://doi.org/10.1177/10454411900010030201. (PMID: 10.1177/104544119000100302011717003)
Depew MJ, Simpson CA, Morasso M, Rubenstein JLR (2005) Reassessing the Dlx code: the genetic regulation of branchial arch skeletal pattern and development. J Anat 207:501–561. https://doi.org/10.1111/j.1469-7580.2005.00487.x. (PMID: 10.1111/j.1469-7580.2005.00487.x163133911571560)
Du W, Prochazka J, Prochazkova M, Klein OD (2016) Expression of FGFs during early mouse tongue development. Gene Expr Patterns 20:81–87. https://doi.org/10.1016/j.gep.2015.12.003. (PMID: 10.1016/j.gep.2015.12.00326748348)
Emmanouil-Nikoloussi E, Kerameos-Foroglou C (1992) Congenital syndromes connected with tongue malformations. Bull Assoc Anat (Nancy) 76:67–72.
Han D, Zhao H, Parada C et al (2012) A TGFβ-Smad4-Fgf6 signaling cascade controls myogenic differentiation and myoblast fusion during tongue development. Development 139:1640–1650. https://doi.org/10.1242/dev.076653. (PMID: 10.1242/dev.076653224385703317969)
Hao Y, Tang S, Yuan Y et al (2019) Roles of FGF8 subfamily in embryogenesis and oral–maxillofacial diseases (Review). Int J Oncol 54:797–806. https://doi.org/10.3892/ijo.2019.4677. (PMID: 10.3892/ijo.2019.467730628659)
Haque T, Nakada S, Hamdy RC (2007) A review of FGF18: Its expression, signaling pathways and possible functions during embryogenesis and post-natal development. Histol Histopathol 22:97–105. https://doi.org/10.14670/HH-22.97. (PMID: 10.14670/HH-22.9717128416)
Heude E, Bouhali K, Kurihara Y et al (2010) Jaw muscularization requires Dlx expression by cranial neural crest cells. Proc Natl Acad Sci 107:11441–11446. https://doi.org/10.1073/pnas.1001582107. (PMID: 10.1073/pnas.1001582107205345362895105)
Hosokawa R, Oka K, Yamaza T et al (2010) TGF-β mediated FGF10 signaling in cranial neural crest cells controls development of myogenic progenitor cells through tissue–tissue interactions during tongue morphogenesis. Dev Biol 341:186–195. https://doi.org/10.1016/j.ydbio.2010.02.030. (PMID: 10.1016/j.ydbio.2010.02.030201936753336866)
Iwasaki S (2002) Evolution of the structure and function of the vertebrate tongue. J Anat 201:1–13. https://doi.org/10.1046/j.1469-7580.2002.00073.x. (PMID: 10.1046/j.1469-7580.2002.00073.x121714721570891)
Jacobson SE, Crawford JJ, McFall WR (1973) Oral Physiotherapy of the Tongue and Palate: Relationship to Plaque Control. J Am Dent Assoc 87:134–139. https://doi.org/10.14219/jada.archive.1973.0335. (PMID: 10.14219/jada.archive.1973.03354513362)
Jung H-S, Akita K, Kim J-Y (2004) Spacing patterns on tongue surface-gustatory papilla. Int J Dev Biol 48:157–161. https://doi.org/10.1387/ijdb.15272380. (PMID: 10.1387/ijdb.1527238015272380)
Jung J-K, Jung H-I, Neupane S et al (2017) Involvement of PI3K and PKA pathways in mouse tongue epithelial differentiation. Acta Histochem 119:92–98. https://doi.org/10.1016/j.acthis.2016.11.013. (PMID: 10.1016/j.acthis.2016.11.01327939449)
Keith L, Moore TVN, Persaud MGT (2008) The Developing Human: Clinically Oriented Embryology, 10th edn. Elsevier, Philadelphia,, p 522.
Kim J-Y, Cho S-W, Lee M-J et al (2005) Inhibition of connexin 43 alters Shh and Bmp-2 expression patterns in embryonic mouse tongue. Cell Tissue Res 320:409–415. https://doi.org/10.1007/s00441-005-1091-y. (PMID: 10.1007/s00441-005-1091-y15846511)
Kirilenko P, He G, Mankoo BS et al (2011) Transient Activation of Meox1 Is an Early Component of the Gene Regulatory Network Downstream of Hoxa2. Mol Cell Biol 31:1301–1308. https://doi.org/10.1128/MCB.00705-10. (PMID: 10.1128/MCB.00705-10212453833067911)
Konop M, Rybka M, Drapała A (2021) Keratin Biomaterials in Skin Wound Healing, an Old Player in Modern Medicine: A Mini Review. Pharmaceutics 13:2029. https://doi.org/10.3390/pharmaceutics13122029.
Liu P, Lu J, Cardoso WV, Vaziri C (2008) The SPARC-related Factor SMOC-2 Promotes Growth Factor-induced Cyclin D1 Expression and DNA Synthesis via Integrin-linked Kinase. Mol Biol Cell 19:248–261. https://doi.org/10.1091/mbc.e07-05-0510. (PMID: 10.1091/mbc.e07-05-0510179893642174189)
Mangold AR, Torgerson RR, Rogers RS (2016) Diseases of the tongue. Clin Dermatol 34:458–469. https://doi.org/10.1016/j.clindermatol.2016.02.018. (PMID: 10.1016/j.clindermatol.2016.02.01827343960)
Mankoo BS, Skuntz S, Harrigan I et al (2003) The concerted action of Meox homeobox genes is required upstream of genetic pathways essential for the formation, patterning and differentiation of somites. Development 130:4655–4664. https://doi.org/10.1242/dev.00687. (PMID: 10.1242/dev.0068712925591)
Mantilla Gómez S, Danser MM, Sipos PM et al (2001) Tongue coating and salivary bacterial counts in healthy/gingivitis subjects and periodontitis patients. J Clin Periodontol 28:970–978. https://doi.org/10.1034/j.1600-051x.2001.028010970.x. (PMID: 10.1034/j.1600-051x.2001.028010970.x11686816)
Marie PJ (2003) Fibroblast growth factor signaling controlling osteoblast differentiation. Gene 316:23–32. https://doi.org/10.1016/S0378-1119(03)00748-0. (PMID: 10.1016/S0378-1119(03)00748-014563548)
Mofarrahi M, Hussain SNA (2011) Expression and Functional Roles of Angiopoietin-2 in Skeletal Muscles. PLoS ONE 6:e22882. https://doi.org/10.1371/journal.pone.0022882. (PMID: 10.1371/journal.pone.0022882218295463146511)
Mommaerts H, Esguerra CV, Hartmann U et al (2014) Smoc2 modulates embryonic myelopoiesis during zebrafish development. Dev Dyn 243:1375–1390. https://doi.org/10.1002/dvdy.24164. (PMID: 10.1002/dvdy.2416425044883)
Moore EE, Bendele AM, Thompson DL et al (2005) Fibroblast growth factor-18 stimulates chondrogenesis and cartilage repair in a rat model of injury-induced osteoarthritis. Osteoarthr Cartil 13:623–631. https://doi.org/10.1016/j.joca.2005.03.003. (PMID: 10.1016/j.joca.2005.03.003)
Noden DM, Francis-West P (2006) The differentiation and morphogenesis of craniofacial muscles. Dev Dyn 235:1194–1218. https://doi.org/10.1002/dvdy.20697. (PMID: 10.1002/dvdy.2069716502415)
Parada C, Chai Y (2015) Mandible and Tongue Development. Curr Top Dev Biol 115:31–58. https://doi.org/10.1016/bs.ctdb.2015.07.023. (PMID: 10.1016/bs.ctdb.2015.07.023265899204869709)
Parada C, Han D, Chai Y (2012) Molecular and Cellular Regulatory Mechanisms of Tongue Myogenesis. J Dent Res 91:528–535. https://doi.org/10.1177/0022034511434055. (PMID: 10.1177/0022034511434055222192103348065)
Pastar I, Stojadinovic O, Yin NC et al (2014) Epithelialization in Wound Healing: A Comprehensive Review. Adv Wound Care 3:445–464. https://doi.org/10.1089/wound.2013.0473. (PMID: 10.1089/wound.2013.0473)
Pazin DE, Albrecht KH (2009) Developmental expression of Smoc1 and Smoc2 suggests potential roles in fetal gonad and reproductive tract differentiation. Dev Dyn 238:2877–2890. https://doi.org/10.1002/dvdy.22124. (PMID: 10.1002/dvdy.22124198421753070464)
Quirynen M, Mongardini C, van Steenberghe D (1998) The Effect of a 1-Stage Full-Mouth Disinfection on Oral Malodor and Microbial Colonization of the Tongue in Periodontitis Patients. A Pilot Study. J Periodontol 69:374–382. https://doi.org/10.1902/jop.1998.69.3.374. (PMID: 10.1902/jop.1998.69.3.3749579625)
Sohn W-J, Jung H-I, Choi M-A et al (2011) Reciprocal interactions of Fgf10/Fgfr2b modulate the mouse tongue epithelial differentiation. Cell Tissue Res 345:265–273. https://doi.org/10.1007/s00441-011-1204-8. (PMID: 10.1007/s00441-011-1204-821720756)
Szpaderska AM, Walsh CG, Steinberg MJ, DiPietro LA (2005) Distinct Patterns of Angiogenesis in Oral and Skin Wounds. J Dent Res 84:309–314. https://doi.org/10.1177/154405910508400403. (PMID: 10.1177/15440591050840040315790734)
Xu J, Liu H, Lan Y et al (2016) A Shh-Foxf-Fgf18-Shh Molecular Circuit Regulating Palate Development. PLOS Genet 12:e1005769. https://doi.org/10.1371/journal.pgen.1005769. (PMID: 10.1371/journal.pgen.1005769267458634712829)
Zhu X-J, Yuan X, Wang M et al (2017) A Wnt/Notch/Pax7 signaling network supports tissue integrity in tongue development. J Biol Chem 292:9409–9419. https://doi.org/10.1074/jbc.M117.789438. (PMID: 10.1074/jbc.M117.789438284388365454119)
فهرسة مساهمة: Keywords: Angpt2; Fgf18; Meox1; Microarray analysis; Smoc2; Tongue
المشرفين على المادة: 0 (Angiopoietin-2)
63231-63-0 (RNA)
SY7Q814VUP (Calcium)
تواريخ الأحداث: Date Created: 20220811 Date Completed: 20220919 Latest Revision: 20221024
رمز التحديث: 20221213
DOI: 10.1007/s13258-022-01282-5
PMID: 35951154
قاعدة البيانات: MEDLINE
الوصف
تدمد:2092-9293
DOI:10.1007/s13258-022-01282-5