دورية أكاديمية

Control of cell state transitions.

التفاصيل البيبلوغرافية
العنوان: Control of cell state transitions.
المؤلفون: Rukhlenko OS; Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland., Halasz M; Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland., Rauch N; Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland., Zhernovkov V; Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland., Prince T; Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland., Wynne K; Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland., Maher S; Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland., Kashdan E; Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland., MacLeod K; Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK., Carragher NO; Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK., Kolch W; Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland., Kholodenko BN; Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland. boris.kholodenko@ucd.ie.; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland. boris.kholodenko@ucd.ie.; Department of Pharmacology, Yale University School of Medicine, New Haven, USA. boris.kholodenko@ucd.ie.
المصدر: Nature [Nature] 2022 Sep; Vol. 609 (7929), pp. 975-985. Date of Electronic Publication: 2022 Sep 14.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Cell Differentiation* , Models, Biological* , Signal Transduction*, Cell Proliferation ; Datasets as Topic ; Phenotype ; Single-Cell Analysis ; Workflow
مستخلص: Understanding cell state transitions and purposefully controlling them is a longstanding challenge in biology. Here we present cell state transition assessment and regulation (cSTAR), an approach for mapping cell states, modelling transitions between them and predicting targeted interventions to convert cell fate decisions. cSTAR uses omics data as input, classifies cell states, and develops a workflow that transforms the input data into mechanistic models that identify a core signalling network, which controls cell fate transitions by influencing whole-cell networks. By integrating signalling and phenotypic data, cSTAR models how cells manoeuvre in Waddington's landscape 1 and make decisions about which cell fate to adopt. Notably, cSTAR devises interventions to control the movement of cells in Waddington's landscape. Testing cSTAR in a cellular model of differentiation and proliferation shows a high correlation between quantitative predictions and experimental data. Applying cSTAR to different types of perturbation and omics datasets, including single-cell data, demonstrates its flexibility and scalability and provides new biological insights. The ability of cSTAR to identify targeted perturbations that interconvert cell fates will enable designer approaches for manipulating cellular development pathways and mechanistically underpinned therapeutic interventions.
(© 2022. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Waddington, C. H. Organisers and Genes (Univ. Press, 1940).
Brackston, R. D., Lakatos, E. & Stumpf, M. P. H. Transition state characteristics during cell differentiation. PLoS Comput. Biol. 14, e1006405 (2018). (PMID: 30235202616817010.1371/journal.pcbi.1006405)
Wang, J., Zhang, K., Xu, L. & Wang, E. Quantifying the Waddington landscape and biological paths for development and differentiation. Proc. Natl Acad. Sci. USA 108, 8257–8262 (2011). (PMID: 21536909310095610.1073/pnas.1017017108)
Hormoz, S. et al. Inferring cell-state transition dynamics from lineage trees and endpoint single-cell measurements. Cell Syst. 3, 419–433.e418 (2016). (PMID: 27883889514282910.1016/j.cels.2016.10.015)
Kholodenko, B. N. et al. Untangling the wires: a strategy to trace functional interactions in signaling and gene networks. Proc. Natl Acad. Sci. USA 99, 12841 (2002). (PMID: 1224233613054710.1073/pnas.192442699)
Xicoy, H., Wieringa, B. & Martens, G. J. The SH-SY5Y cell line in Parkinson's disease research: a systematic review. Mol. Neurodegener. 12, 10 (2017). (PMID: 28118852525988010.1186/s13024-017-0149-0)
Schramm, A. et al. Biological effects of TrkA and TrkB receptor signaling in neuroblastoma. Cancer Lett. 228, 143–153 (2005). (PMID: 1592185110.1016/j.canlet.2005.02.051)
Aygun, N. Biological and genetic features of neuroblastoma and their clinical importance. Curr. Pediatr. Rev. 14, 73–90 (2018). (PMID: 2938070210.2174/1573396314666180129101627)
Haken, H. Synergetics: Introduction and Advanced Topics (Springer, 2004).
Rickles, D., Hawe, P. & Shiell, A. A simple guide to chaos and complexity. J. Epidemiol. Commun. Health 61, 933 (2007). (PMID: 10.1136/jech.2006.054254)
Sethna, J. P. Statistical Mechanics: Entropy, Order Parameters, and Complexity (Oxford Univ. Press, 2006).
Aron, C. & Chamon, C. Landau theory for non-equilibrium steady states. SciPost Phys. 8, 074 (2020). (PMID: 10.21468/SciPostPhys.8.5.074)
Needham, E. J., Parker, B. L., Burykin, T., James, D. E. & Humphrey, S. J. Illuminating the dark phosphoproteome. Sci. Signal. 12, eaau8645 (2019). (PMID: 3067063510.1126/scisignal.aau8645)
Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995). (PMID: 10.1007/BF00994018)
Fey, D. et al. Signaling pathway models as biomarkers: patient-specific simulations of JNK activity predict the survival of neuroblastoma patients. Sci. Signal. 8, ra130 (2015). (PMID: 2669663010.1126/scisignal.aab0990)
Vaishnavi, A., Le, A. T. & Doebele, R. C. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov. 5, 25 (2015). (PMID: 2552719710.1158/2159-8290.CD-14-0765)
de la Fuente, A., Brazhnik, P. & Mendes, P. Linking the genes: inferring quantitative gene networks from microarray data. Trends Genet. 18, 395–398 (2002). (PMID: 1214200710.1016/S0168-9525(02)02692-6)
Yalamanchili, N. et al. Quantifying gene network connectivity in silico: scalability and accuracy of a modular approach. Syst. Biol. 153, 236–246 (2006). (PMID: 10.1049/ip-syb:20050090)
Bastiaens, P. et al. Silence on the relevant literature and errors in implementation. Nat. Biotechnol. 33, 336–339 (2015). (PMID: 2585005210.1038/nbt.3185)
Kholodenko, B. N., Hoek, J. B., Westerhoff, H. V. & Brown, G. C. Quantification of information transfer via cellular signal transduction pathways. FEBS Lett. 414, 430–434 (1997). (PMID: 931573410.1016/S0014-5793(97)01018-1)
Kholodenko, B. N. & Kholodov, L. E. Individualization and optimization of dosings of pharmacological preparations; principle of maximum in the analysis of pharmacological response. Pharm. Chem. J. 14, 287–291 (1980). (PMID: 10.1007/BF00777393)
Santos, S. D., Verveer, P. J. & Bastiaens, P. I. Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat. Cell Biol. 9, 324–330 (2007). (PMID: 1731024010.1038/ncb1543)
Sontag, E., Kiyatkin, A. & Kholodenko, B. N. Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data. Bioinformatics 20, 1877–1886 (2004). (PMID: 1503751110.1093/bioinformatics/bth173)
Thomaseth, C. et al. Impact of measurement noise, experimental design, and estimation methods on modular response analysis based network reconstruction. Sci. Rep. 8, 16217 (2018). (PMID: 30385767621239910.1038/s41598-018-34353-3)
Santra, T., Rukhlenko, O., Zhernovkov, V. & Kholodenko, B. N. Reconstructing static and dynamic models of signaling pathways using modular response analysis. Curr. Opin. Syst. Biol. 9, 11–21 (2018). (PMID: 10.1016/j.coisb.2018.02.003)
Halasz, M., Kholodenko, B. N., Kolch, W. & Santra, T. Integrating network reconstruction with mechanistic modeling to predict cancer therapies. Sci. Signal. 9, ra114 (2016). (PMID: 2787939610.1126/scisignal.aae0535)
Greco, W. R., Bravo, G. & Parsons, J. C. The search for synergy: a critical review from a response surface perspective. Pharm. Rev. 47, 331 (1995). (PMID: 7568331)
Dwane, S., Durack, E. & Kiely, P. A. Optimising parameters for the differentiation of SH-SY5Y cells to study cell adhesion and cell migration. BMC Res. Notes 6, 366 (2013). (PMID: 24025096384710610.1186/1756-0500-6-366)
Korkut, A. et al. Perturbation biology nominates upstream-downstream drug combinations in RAF inhibitor resistant melanoma cells. eLife 4, e04640 (2015). (PMID: 453960110.7554/eLife.04640)
Xing, F. et al. Concurrent loss of the PTEN and RB1 tumor suppressors attenuates RAF dependence in melanomas harboring (V600E)BRAF. Oncogene 31, 446–457 (2012). (PMID: 2172535910.1038/onc.2011.250)
Cook, D. P. & Vanderhyden, B. C. Context specificity of the EMT transcriptional response. Nat. Commun. 11, 2142 (2020). (PMID: 32358524719545610.1038/s41467-020-16066-2)
Chen, W. S. et al. Uncovering axes of variation among single-cell cancer specimens. Nat. Methods 17, 302–310 (2020). (PMID: 31932777733986710.1038/s41592-019-0689-z)
Qiu, X. et al. Mapping transcriptomic vector fields of single cells. Cell 185, 690–711.e645 (2022). (PMID: 35108499933214010.1016/j.cell.2021.12.045)
Lange, M. et al. CellRank for directed single-cell fate mapping. Nat. Methods 19, 159–170 (2022). (PMID: 35027767882848010.1038/s41592-021-01346-6)
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Kholodenko, B. N., Rauch, N., Kolch, W. & Rukhlenko, O. S. A systematic analysis of signaling reactivation and drug resistance. Cell Rep. 35, 109157 (2021). (PMID: 34038718820206810.1016/j.celrep.2021.109157)
Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M. & Hirakawa, M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 38, D355–D360 (2010). (PMID: 1988038210.1093/nar/gkp896)
Santra, T., Kolch, W. & Kholodenko, B. N. Integrating Bayesian variable selection with modular response analysis to infer biochemical network topology. BMC Syst. Biol. 7, 57 (2013). (PMID: 23829771372639810.1186/1752-0509-7-57)
Blinov, M. L., Faeder, J. R., Goldstein, B. & Hlavacek, W. S. BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20, 3289–3291 (2004). (PMID: 1521780910.1093/bioinformatics/bth378)
Choy, C. et al. Cooperation of neurotrophin receptor TrkB and Her2 in breast cancer cells facilitates brain metastases. Breast Cancer Res. 19, 51 (2017). (PMID: 28446206540690610.1186/s13058-017-0844-3)
Kennedy, S. P. et al. Targeting promiscuous heterodimerization overcomes innate resistance to ERBB2 dimerization inhibitors in breast cancer. Breast Cancer Res. 21, 43 (2019). (PMID: 30898150642983010.1186/s13058-019-1127-y)
Kholodenko, B. N. Drug resistance resulting from kinase dimerization is rationalized by thermodynamic factors describing allosteric inhibitor effects. Cell Rep. 12, 1939–1949 (2015). (PMID: 2634476410.1016/j.celrep.2015.08.014)
Kholodenko, B. N., Demin, O. V., Moehren, G. & Hoek, J. B. Quantification of short term signaling by the epidermal growth factor receptor. J. Biol. Chem. 274, 30169–30181 (1999). (PMID: 1051450710.1074/jbc.274.42.30169)
Ederer, M. & Gilles, E. D. Thermodynamically feasible kinetic models of reaction networks. Biophys. J. 92, 1846–1857 (2007). (PMID: 17208985186178510.1529/biophysj.106.094094)
Bertelsen, V. & Stang, E. The mysterious ways of ErbB2/HER2 trafficking. Membranes 4, 424–446 (2014). (PMID: 25102001419404310.3390/membranes4030424)
Jeong, J. et al. PMCA2 regulates HER2 protein kinase localization and signaling and promotes HER2-mediated breast cancer. Proc. Natl Acad. Sci. USA 113, E282 (2016). (PMID: 26729871472547310.1073/pnas.1516138113)
Tsyganov, M. A., Kolch, W. & Kholodenko, B. N. The topology design principles that determine the spatiotemporal dynamics of G-protein cascades. Mol. Biosyst. 8, 730–743 (2012). (PMID: 2221852910.1039/c2mb05375f)
Landau, L. D. & Lifshitz, E. M. in Statistical Physics 3rd edn (eds Landau, L. D. & Lifshitz, E. M.) 446–516 (Butterworth–Heinemann, 1980).
Mitra, E. D. et al. PyBioNetFit and the biological property specification language. iScience 19, 1012–1036 (2019). (PMID: 31522114674452710.1016/j.isci.2019.08.045)
Pederson, T. M., Kramer, D. L. & Rondinone, C. M. Serine/threonine phosphorylation of IRS-1 triggers its degradation. Diabetes 50, 24 (2001). (PMID: 1114779010.2337/diabetes.50.1.24)
Yoneyama, Y. et al. Serine phosphorylation by mTORC1 promotes IRS-1 degradation through SCFβ–TRCP E3 ubiquitin ligase. iScience 5, 1–18 (2018). (PMID: 30240640612386310.1016/j.isci.2018.06.006)
Borisov, N. et al. Systems-level interactions between insulin–EGF networks amplify mitogenic signaling. Mol. Syst. Biol. 5, 256 (2009). (PMID: 19357636268372310.1038/msb.2009.19)
Rukhlenko, O. S. et al. Dissecting RAF inhibitor resistance by structure-based modeling reveals ways to overcome oncogenic RAS signaling. Cell Syst. 7, 161–179.e114 (2018). (PMID: 30007540614954510.1016/j.cels.2018.06.002)
Chou, T. C. Drug combination studies and their synergy quantification using the Chou–Talalay method. Cancer Res. 70, 440–446 (2010). (PMID: 2006816310.1158/0008-5472.CAN-09-1947)
Jung, E. J. & Kim, D. R. Control of TrkA-induced cell death by JNK activation and differential expression of TrkA upon DNA damage. Mol. Cells 30, 121–125 (2010). (PMID: 2068048610.1007/s10059-010-0096-x)
Bennett, B. L. et al. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc. Natl Acad. Sci, USA 98, 13681 (2001). (PMID: 117174296110110.1073/pnas.251194298)
Zhang, T. et al. Discovery of potent and selective covalent inhibitors of JNK. Chem. Biol. 19, 140–154 (2012). (PMID: 22284361327041110.1016/j.chembiol.2011.11.010)
Krishna, A. et al. Systems genomics evaluation of the SH-SY5Y neuroblastoma cell line as a model for Parkinson's disease. BMC Genomics 15, 1154 (2014). (PMID: 25528190436783410.1186/1471-2164-15-1154)
Holbeck, S. L. et al. The National Cancer Institute ALMANAC: a comprehensive screening resource for the detection of anticancer drug pairs with enhanced therapeutic activity. Cancer Res. 77, 3564 (2017). (PMID: 28446463549999610.1158/0008-5472.CAN-17-0489)
Macleod, K. G., Serrels, B. & Carragher, N. O. Reverse phase protein arrays and drug discovery. Methods Mol. Biol. 1647, 153–169 (2017). (PMID: 2880900110.1007/978-1-4939-7201-2_10)
Kelstrup, C. D. et al. Performance evaluation of the Q exactive HF-X for shotgun proteomics. J. Proteome Res. 17, 727–738 (2018). (PMID: 2918312810.1021/acs.jproteome.7b00602)
Szklarczyk, D. et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019). (PMID: 3047624310.1093/nar/gky1131)
Kuznetsov, Y. Elements of Applied Bifurcation Theory (Springer, 2013).
معلومات مُعتمدة: 28596 United Kingdom CRUK_ Cancer Research UK; MR/R015635/1 United Kingdom MRC_ Medical Research Council; R01 CA244660 United States CA NCI NIH HHS
تواريخ الأحداث: Date Created: 20220914 Date Completed: 20220930 Latest Revision: 20240306
رمز التحديث: 20240306
مُعرف محوري في PubMed: PMC9644236
DOI: 10.1038/s41586-022-05194-y
PMID: 36104561
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-022-05194-y