دورية أكاديمية

Overexpression of a soybean Globin (GmGlb1-1) gene reduces plant susceptibility to Meloidogyne incognita.

التفاصيل البيبلوغرافية
العنوان: Overexpression of a soybean Globin (GmGlb1-1) gene reduces plant susceptibility to Meloidogyne incognita.
المؤلفون: Basso MF; Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil.; National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70770-917, Brazil., Lourenço-Tessutti IT; Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil.; National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70770-917, Brazil., Moreira-Pinto CE; Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil.; National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70770-917, Brazil.; Federal University of Brasília, Brasília, DF, 70910-900, Brazil., Mendes RAG; Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil.; Federal University of Brasília, Brasília, DF, 70910-900, Brazil., Paes-de-Melo B; Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil.; National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70770-917, Brazil., das Neves MR; Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil., Macedo AF; Department of Botany, Biosciences Institute, University of São Paulo, São Paulo, SP, 05508-090, Brazil., Figueiredo V; Multiuser Unit of Environmental Analysis and Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-971, Brazil., Grandis A; Department of Botany, Biosciences Institute, University of São Paulo, São Paulo, SP, 05508-090, Brazil., Macedo LLP; Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil.; National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70770-917, Brazil., Arraes FBM; Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil.; National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70770-917, Brazil., do Carmo Costa MM; Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil., Togawa RC; Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil.; National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70770-917, Brazil., Enrich-Prast A; Multiuser Unit of Environmental Analysis and Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-971, Brazil.; Biogas Research Center and Department of Thematic Studies, Environmental Change, Linköping University, Linköping, Sweden., Marcelino-Guimaraes FC; National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70770-917, Brazil.; Embrapa Soybean, Londrina, PR, 86001-970, Brazil., Gomes ACMM; Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil., Silva MCM; Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil.; National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70770-917, Brazil., Floh EIS; Department of Botany, Biosciences Institute, University of São Paulo, São Paulo, SP, 05508-090, Brazil., Buckeridge MS; Department of Botany, Biosciences Institute, University of São Paulo, São Paulo, SP, 05508-090, Brazil., de Almeida Engler J; National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70770-917, Brazil.; INRAE, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France., Grossi-de-Sa MF; Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil. fatima.grossi@embrapa.br.; National Institute of Science and Technology, INCT Plant Stress Biotech, EMBRAPA, Brasília, DF, 70770-917, Brazil. fatima.grossi@embrapa.br.; Catholic University of Brasília, Brasília, DF, 71966-700, Brazil. fatima.grossi@embrapa.br.
المصدر: Planta [Planta] 2022 Sep 16; Vol. 256 (4), pp. 83. Date of Electronic Publication: 2022 Sep 16.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag [etc.] Country of Publication: Germany NLM ID: 1250576 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-2048 (Electronic) Linking ISSN: 00320935 NLM ISO Abbreviation: Planta Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin, New York, Springer-Verlag [etc.]
مواضيع طبية MeSH: Arabidopsis* , Tylenchoidea*/genetics, Animals ; Globins/metabolism ; Hydrogen Peroxide/metabolism ; Nitric Oxide/metabolism ; Oxygen/metabolism ; Reactive Oxygen Species/metabolism ; Glycine max/genetics ; Glycine max/metabolism
مستخلص: Main Conclusion: The overexpression of the GmGlb1-1 gene reduces plant susceptibility to Meloidogyne incognita. Non-symbiotic globin class #1 (Glb1) genes are expressed in different plant organs, have a high affinity for oxygen, and are related to nitric oxide (NO) turnover. Previous studies showed that soybean Glb1 genes are upregulated in soybean plants under flooding conditions. Herein, the GmGlb1-1 gene was identified in soybean as being upregulated in the nematode-resistant genotype PI595099 compared to the nematode-susceptible cultivar BRS133 during plant parasitism by Meloidogyne incognita. The Arabidopsis thaliana and Nicotiana tabacum transgenic lines overexpressing the GmGlb1-1 gene showed reduced susceptibility to M. incognita. Consistently, gall morphology data indicated that pJ2 nematodes that infected the transgenic lines showed developmental alterations and delayed parasitism progress. Although no significant changes in biomass and seed yield were detected, the transgenic lines showed an elongated, etiolation-like growth under well-irrigation, and also developed more axillary roots under flooding conditions. In addition, transgenic lines showed upregulation of some important genes involved in plant defense response to oxidative stress. In agreement, higher hydrogen peroxide accumulation and reduced activity of reactive oxygen species (ROS) detoxification enzymes were also observed in these transgenic lines. Thus, based on our data and previous studies, it was hypothesized that constitutive overexpression of the GmGlb1-1 gene can interfere in the dynamics of ROS production and NO scavenging, enhancing the acquired systemic acclimation to biotic and abiotic stresses, and improving the cellular homeostasis. Therefore, these collective data suggest that ectopic or nematode-induced overexpression, or enhanced expression of the GmGlb1-1 gene using CRISPR/dCas9 offers great potential for application in commercial soybean cultivars aiming to reduce plant susceptibility to M. incognita.
(© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Abad P, Gouzy J, Aury J-M, Castagnone-Sereno P, Danchin EGJ, Deleury E, Perfus-Barbeoch L, Anthouard V, Artiguenave F, Blok VC, Caillaud M-C, Coutinho PM, Dasilva C, De Luca F, Deau F, Esquibet M, Flutre T, Goldstone JV, Hamamouch N, Hewezi T, Jaillon O, Jubin C, Leonetti P, Magliano M, Maier TR, Markov GV, McVeigh P, Pesole G, Poulain J, Robinson-Rechavi M, Sallet E, Ségurens B, Steinbach D, Tytgat T, Ugarte E, van Ghelder C, Veronico P, Baum TJ, Blaxter M, Bleve-Zacheo T, Davis EL, Ewbank JJ, Favery B, Grenier E, Henrissat B, Jones JT, Laudet V, Maule AG, Quesneville H, Rosso M-N, Schiex T, Smant G, Weissenbach J, Wincker P (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 26:909. (PMID: 18660804)
Ali MA, Azeem F, Abbas A, Joyia FA, Li H, Dababat AA (2017) Transgenic strategies for enhancement of nematode resistance in plants. Front Plant Sci 8:750. (PMID: 285365955422515)
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. (PMID: 2231712)
Arthikala MK, Montiel J, Sánchez-López R, Nava N, Cárdenas L, Quinto C (2017) Respiratory rurst oxidase homolog gene A is crucial for rhizobium infection and nodule maturation and function in common bean. Front Plant Sci 8:2003. (PMID: 292180565703732)
Barata RM, Chaparro A, Chabregas SM, González R, Labate CA, Azevedo RA, Sarath G, Lea PJ, Silva-Filho MC (2000) Targeting of the soybean leghemoglobin to tobacco chloroplasts: effects on aerobic metabolism in transgenic plants. Plant Sci 155:193–202. (PMID: 10814823)
Basso MF, Ferreira PCG, Kobayashi AK, Harmon FG, Nepomuceno AL, Molinari HBC, Grossi-de-Sa MF (2019) MicroRNAs and new biotechnological tools for its modulation and improving stress tolerance in plants. Plant Biotechnol J 17:1482–1500. (PMID: 309473986662102)
Basso MF, Arraes FBM, Grossi-de-Sa M, Moreira VJV, Alves-Ferreira M, Grossi-de-Sa MF (2020a) Insights into genetic and molecular elements for transgenic crop development. Front Plant Sci 11:509. (PMID: 324997967243915)
Basso MF, Lourenço-Tessutti IT, Mendes RAG, Pinto CEM, Bournaud C, Gillet F-X, Togawa RC, de Macedo LLP, Engler JA, Grossi-de-Sa MF (2020b) MiDaf16-like and MiSkn1-like gene families are reliable targets to develop biotechnological tools for the control and management of Meloidogyne incognita. Sci Rep 10:6991. (PMID: 323329047181638)
Bellafiore S, Shen Z, Rosso M-N, Abad P, Shih P, Briggs SP (2008) Direct identification of the Meloidogyne incognita secretome reveals proteins with host cell reprogramming potential. PLoS Pathog 4:e1000192. (PMID: 189748302568823)
Bernard GC, Egnin M, Bonsi C (2017) The impact of plant-parasitic nematodes on agriculture and methods of control. In: Shah MM, Mahamood MN (eds) Nematology - concepts, diagnosis and control. IntechOpen, London. https://doi.org/10.5772/intechopen.68958. (PMID: 10.5772/intechopen.68958)
Bonna AL, Chaparro-Giraldo A, Appezzato-da-Gloria B, Hedden P, Silva-Filho MC (2008) Ectopic expression of soybean leghemoglobin in chloroplasts impairs gibberellin biosynthesis and induces dwarfism in transgenic potato plants. Mol Breed 22:613–618.
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. (PMID: 942051)
Bülow L, Holmberg N, Lilius G, Bailey JE (1999) The metabolic effects of native and transgenic hemoglobins on plants. Trends Biotechnol 17:21–24. (PMID: 10098274)
Carneiro RG, Mazzafera P, Ferraz LCCB, Muraoka T, Trivelin PCO (2002) Uptake and translocation of nitrogen, phosphorus and calcium in soybean infected with Meloidogyne incognita and M. javanica. Fitopatol Bras 27:141–150.
Castagnone-Sereno P, Danchin EGJ, Perfus-Barbeoch L, Abad P (2013) Diversity and evolution of root-knot nematodes, genus Meloidogyne: new insights from the genomic Era. Annu Rev Phytopathol 51:203–220. (PMID: 23682915)
Chaparro-Giraldo A, Barata RM, Chabregas SM, Azevedo RA, Silva-Filho MC (2000) Soybean leghemoglobin targeted to potato chloroplasts influences growth and development of transgenic plants. Plant Cell Rep 19:961–965. (PMID: 30754839)
Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal 16(6):735–743. https://doi.org/10.1046/j.1365-313x.1998.00343.x. (PMID: 10.1046/j.1365-313x.1998.00343.x)
Cosio C, Ranocha P, Francoz E, Burlat V, Zheng Y, Perry SE, Ripoll J-J, Yanofsky M, Dunand C (2017) The class III peroxidase PRX17 is a direct target of the MADS-box transcription factor AGAMOUS-LIKE15 (AGL15) and participates in lignified tissue formation. New Phytol 213:250–263. (PMID: 27513887)
Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465-469. (PMID: 184247972447785)
Dieryck W, Pagnier J, Poyart C, Marden MC, Gruber V, Bournat P, Baudino S, Mérot B (1997) Human haemoglobin from transgenic tobacco. Nature 386:29–30. (PMID: 9052777)
Dmitryukova MY, Baimiev AK, Fedyaev VV, Rakhmankulova ZF (2011) Effect of leghemoglobin A gene expression from soybean on tobacco plant growth and antioxidant state under damaging action of cadmium. Russ J Plant Physiol 58:1055.
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2012) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. (PMID: 231048863530905)
Engler JA, Vieira P, Rodiuc N, Grossi de Sa MF, Engler G (2015) Chapter four—the plant cell cycle machinery: usurped and modulated by plant-parasitic nematodes. Adv Bot Res 73:91–118 (Escobar C, Fenoll C (eds)).
Farnese FS, Menezes-Silva PE, Gusman GS, Oliveira JA (2016) When bad guys become good ones: the key role of reactive oxygen species and nitric oxide in the plant responses to abiotic stress. Front Plant Sci 7:471. (PMID: 271483004828662)
Fragoso RR, Arraes FBM, Lourenço-Tristan I, Miranda VJ, Basso MF, Ferreira AVJ, Viana AAB, Lins CBJ, Lins PC, Engler GJ, Moura SM, Batista JAN, Silva MCM, Engler G, Morgante CV, Lisei-de-Sa ME, Vasques RM, Engler JA, Grossi-de-Sa MF (2022) Functional characterization of the pUceS8.3 promoter and its potential use for ectopic gene overexpression. PLANTA 256:69. https://doi.org/10.1007/s00425-022-03980-6.
Garrocho-Villegas V, Gopalasubramaniam SK, Arredondo-Peter R (2007) Plant hemoglobins: what we know six decades after their discovery. Gene 398:78–85. (PMID: 17540516)
Gechev TS, Hille J (2005) Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol 168:17–20. (PMID: 156319872171664)
Gillet FX, Bournaud C, Junior JDAS, Grossi-de-Sa MF (2017) Plant-parasitic nematodes: towards understanding molecular players in stress responses. Ann Bot 119:775–789. (PMID: 280876595378187)
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186. (PMID: 22110026)
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652. (PMID: 215724403571712)
Gupta KJ, Igamberdiev AU (2016) Reactive nitrogen species in mitochondria and their implications in plant energy status and hypoxic stress tolerance. Front Plant Sci 7:369. (PMID: 270475334806263)
Hamawaki OT, Hamawaki RL, Nogueira APO, Glasenapp JS, Hamawaki CDL, Silva COD (2019) Evaluation of soybean breeding lineages to new sources of root-knot nematode resistance. Cienc Agrotec 43:e009519.
Hartman GL, West ED, Herman TK (2011) Crops that feed the world 2. Soybean-worldwide production, use, and constraints caused by pathogens and pests. Food Secur 3:5–17.
Hasan MS, Singh V, Islam S, Islam MS, Ahsan R, Kaundal A, Islam T, Ghosh A (2021) Genome-wide identification and expression profiling of glutathione S-transferase family under multiple abiotic and biotic stresses in Medicago truncatula L. PLoS ONE 16:e0247170. (PMID: 336068127894904)
Hebelstrup KH, Jensen EØ (2008) Expression of NO scavenging hemoglobin is involved in the timing of bolting in Arabidopsis thaliana. Planta 227:917–927. (PMID: 18034356)
Hebelstrup KH, Hunt P, Dennis E, Jensen SB, Jensen EO (2006) Hemoglobin is essential for normal growth of Arabidopsis organs. Physiol Plant 127:157–166.
Hill RD (2012) Non-symbiotic haemoglobins—what’s happening beyond nitric oxide scavenging? AoB Plants 2012:pls004. (PMID: 224796753292739)
Holmberg N, Lilius G, Bailey JE, Bülow L (1997) Transgenic tobacco expressing Vitreoscilla hemoglobin exhibits enhanced growth and altered metabolite production. Nat Biotechnol 15:244–247. (PMID: 9062923)
Hussey RS, Barker KR (1973) A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Dis Rep 57:1025–1028.
Igamberdiev AU, Hill RD (2004) Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. J Exp Bot 55:2473–2482. (PMID: 15448180)
Junior JDAS, Pierre O, Coelho RR, Grossi-de-Sa MF, Engler G, Engler JA (2017) Application of nuclear volume measurements to comprehend the cell cycle in root-knot nematode-induced giant cells. Front Plant Sci 8:961.
Koltun A, Fuhrmann-Aoyagi MB, Moraes LAC, Nepomuceno AL, Gonçalves LSA, Mertz-Henning LM (2021) Uncovering the roles of hemoglobins in soybean facing water stress. Gene 810:146055. (PMID: 34737003)
Koutsovoulos GD, Marques E, Arguel M-J, Machado AC, Carneiro RMDG, Castagnone-Sereno P, Danchin EG, Albuquerque EV (2018) Parallel adaptations to different host plants despite clonal reproduction in the world most devastating nematode pest. BioRxiv 362129.
Labudda M, Różańska E, Gietler M, Fidler J, Muszyńska E, Prabucka B, Morkunas I (2020) Cyst nematode infection elicits alteration in the level of reactive nitrogen species, protein s-nitrosylation and nitration, and nitrosoglutathione reductase in Arabidopsis thaliana roots. Antioxidants (basel) 9:795.
Lu P, Davis RF, Kemerait RC, van Iersel MW, Scherm H (2014) Physiological effects of Meloidogyne incognita infection on cotton genotypes with differing levels of resistance in the greenhouse. J Nematol 46:352–359. (PMID: 255800284284087)
Ma L, Shi Y, Siemianowski O, Yuan B, Egner TK, Mirnezami SV, Lind KR, Ganapathysubramanian B, Venditti V, Cademartiri L (2019) Hydrogel-based transparent soils for root phenotyping in vivo. Proc Natl Acad Sci USA 116:11063–11068. (PMID: 310889696561166)
Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Geer LY, Bryant SH (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45:D200–D203. (PMID: 27899674)
Mejias J, Truong NM, Abad P, Favery B, Quentin M (2019) Plant proteins and processes targeted by parasitic nematode effectors. Front Plant Sci 10:970. (PMID: 314175876682612)
Mendes RA, Basso MF, Fernandes-de-Araújo J, Paes-de-Melo B, Lima RN, Ribeiro TP, da Silva-Mattos V, Saliba-Albuquerque EV, Grossi-de-Sa M, Dessaune-Tameirao SN, da Rocha-Fragoso R, Mattar-da-Silva MC, Vignols F, Fernandez D, Grossi-de-Sa MF (2021a) Minc00344 and Mj-NULG1a effectors interact with GmHub10 protein to promote the soybean parasitism by Meloidogyne incognita and M javanica. Exp Parasitol 229:108153.
Mendes RA, Basso MF, Paes de Melo B, Ribeiro TP, Lima RN, Fernandes de Araújo J, Grossi-de-Sa M, da Silva MV, Togawa RC, Saliba Albuquerque ÉV, Lisei-de-Sa ME, Mattar da Silva MC, Pepino Macedo LL, da Rocha FR, Fernandez D, Vignols F, Grossi-de-Sa MF (2021b) The Mi-EFF1/Minc17998 effector interacts with the soybean GmHub6 protein to promote host plant parasitism by Meloidogyne incognita. Physiol Mol Plant Pathol 114:101630.
Muhire BM, Varsani A, Martin DP (2014) SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PLoS ONE 9:e108277. (PMID: 252598914178126)
Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497.
Nakayama TJ, Rodrigues FA, Neumaier N, Marcolino-Gomes J, Molinari HBC, Santiago TR, Formighieri EF, Basso MF, Farias JRB, Emygdio BM, de Oliveira ACB, Campos AD, Borém A, Harmon FG, Mertz-Henning LM, Nepomuceno AL (2017) Insights into soybean transcriptome reconfiguration under hypoxic stress: functional, regulatory, structural, and compositional characterization. PLoS ONE 12:e0187920. (PMID: 291454965690659)
Neuser J, Metzen CC, Dreyer BH, Feulner C, van Dongen JT, Schmidt RR, Schippers JHM (2019) HBI1 mediates the trade-off between growth and immunity through its impact on apoplastic ROS homeostasis. Cell Rep 28:1670–1678. (PMID: 31412238)
Oliveira JTA, Araujo-Filho JH, Grangeiro TB, Gondim DMF, Segalin J, Pinto PM, Carlini CRRS, Silva FDA, Lobo MDP, Costa JH, Vasconcelos IM (2014) Enhanced synthesis of antioxidant enzymes, defense proteins and leghemoglobin in rhizobium-free cowpea roots after challenging with Meloydogine incognita. Proteomes 2:527–549. (PMID: 282503945302692)
Oostenbrink M (1966) Major characteristics of the relation between nematode and plants. Meded Landbouwhogeschool 66:3–46.
Paes-de-Melo B, Lourenço-Tessutti IT, Fraga OT, Pinheiro LB, de Jesus Lins CB, Morgante CV, Engler JA, Reis PAB, Grossi-de-Sá MF, Fontes EPB (2021) Contrasting roles of GmNAC065 and GmNAC085 in natural senescence, plant development, multiple stresses and cell death responses. Sci Rep 11(1):11178.
Park SH, Rose SC, Zapata C, Srivatanakul M, Smith RH (1998) Cross-protection and selectable marker genes in plant transformation. In Vitro Cell Dev Biol Plant 34:117–121.
Perazzolli M, Dominici P, Romero-Puertas MC, Zago E, Zeier J, Sonoda M, Lamb C, Delledonne M (2004) Arabidopsis nonsymbiotic hemoglobin AHb1 modulates nitric oxide bioactivity. Plant Cell 16:2785–2794. (PMID: 15367716520971)
Sato K, Kadota Y, Shirasu K (2019) Plant immune responses to parasitic nematodes. Front Plant Sci 10:1165. (PMID: 316164536775239)
Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101. (PMID: 18546601)
Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183. (PMID: 20075913)
Seo Y, Kim YH (2014) Control of Meloidogyne incognita using mixtures of organic acids. Plant Pathol J 30:450–455. (PMID: 255063124262300)
Shukla N, Yadav R, Kaur P, Rasmussen S, Goel S, Agarwal M, Jagannath A, Gupta R, Kumar A (2018) Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-infected tomato (Solanum lycopersicum) roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance responses. Mol Plant Pathol 19:615–633. (PMID: 28220591)
Singh S, Varma A (2017) Structure, function, and estimation of leghemoglobin. In: Hansen AP, Choudhary DK, Agrawal PK, Varma A (eds) Rhizobium biology and biotechnology. Springer International Publishing, Cham, pp 309–330. https://doi.org/10.1007/978-3-319-64982-5_15. (PMID: 10.1007/978-3-319-64982-5_15)
Stothard P (2000) The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28:1102–1104. (PMID: 10868275)
Tang Y, Liu Q, Liu Y, Zhang L, Ding W (2017) Overexpression of NtPR-Q up-regulates multiple defense-related genes in Nicotiana tabacum and enhances plant resistance to Ralstonia solanacearum. Front Plant Sci 8:1963. (PMID: 292010345696355)
Trudgill DL, Blok VC (2001) Apomictic, polyphagous root-knot nematodes: exceptionally successful and damaging biotrophic root pathogens. Annu Rev Phytopathol 39:53–77. (PMID: 11701859)
Tylka GL, Marett CC (2021) Known distribution of the soybean cyst nematode, Heterodera glycines, in the United States and Canada in 2020. Plant Health Prog 22:72–74.
Valliyodan B, Van Toai TT, Alves JD, Goulart PFP, Lee JD, Fritschi FB, Rahman MA, Islam R, Shannon JG, Nguyen HT (2014) Expression of root-related transcription factors associated with flooding tolerance of soybean (Glycine max). Int J Mol Sc 15:17622–17643.
Windham GL, Williams WP (1987) Host suitability of commercial corn hybrids to Meloidogyne arenaria and M. incognita. J Nematol 19:13–16. (PMID: 192902662618705)
Zhou J, Jia F, Shao S, Zhang H, Li G, Xia X, Zhou Y, Yu J, Shi K (2015) Involvement of nitric oxide in the jasmonate-dependent basal defense against root-knot nematode in tomato plants. Front Plant Sci 6:193–193. (PMID: 259146984392611)
فهرسة مساهمة: Keywords: BRS133; Glycine max; Glyma.11G121800; New biotechnology tools; PI595099; Phytoglobins; Plant-nematode interaction; Root-knot nematodes
المشرفين على المادة: 0 (Reactive Oxygen Species)
31C4KY9ESH (Nitric Oxide)
9004-22-2 (Globins)
BBX060AN9V (Hydrogen Peroxide)
S88TT14065 (Oxygen)
تواريخ الأحداث: Date Created: 20220916 Date Completed: 20220920 Latest Revision: 20231213
رمز التحديث: 20240628
DOI: 10.1007/s00425-022-03992-2
PMID: 36112244
قاعدة البيانات: MEDLINE