دورية أكاديمية

Quantitative MRI for Evaluation of Musculoskeletal Disease: Cartilage and Muscle Composition, Joint Inflammation, and Biomechanics in Osteoarthritis.

التفاصيل البيبلوغرافية
العنوان: Quantitative MRI for Evaluation of Musculoskeletal Disease: Cartilage and Muscle Composition, Joint Inflammation, and Biomechanics in Osteoarthritis.
المؤلفون: Eck BL, Yang M, Elias JJ, Winalski CS, Altahawi F, Subhas N, Li X
المصدر: Investigative radiology [Invest Radiol] 2023 Jan 01; Vol. 58 (1), pp. 60-75. Date of Electronic Publication: 2022 Sep 13.
نوع المنشور: Review; Journal Article
اللغة: English
بيانات الدورية: Publisher: Lippincott Williams & Wilkins Country of Publication: United States NLM ID: 0045377 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1536-0210 (Electronic) Linking ISSN: 00209996 NLM ISO Abbreviation: Invest Radiol Subsets: MEDLINE
أسماء مطبوعة: Publication: 1998- : Hagerstown, MD : Lippincott Williams & Wilkins
Original Publication: Philadelphia.
مواضيع طبية MeSH: Cartilage, Articular*/pathology , Musculoskeletal Diseases*/pathology, Humans ; Magnetic Resonance Imaging/methods ; Disease Progression ; Muscles
مستخلص: Abstract: Magnetic resonance imaging (MRI) is a valuable tool for evaluating musculoskeletal disease as it offers a range of image contrasts that are sensitive to underlying tissue biochemical composition and microstructure. Although MRI has the ability to provide high-resolution, information-rich images suitable for musculoskeletal applications, most MRI utilization remains in qualitative evaluation. Quantitative MRI (qMRI) provides additional value beyond qualitative assessment via objective metrics that can support disease characterization, disease progression monitoring, or therapy response. In this review, musculoskeletal qMRI techniques are summarized with a focus on techniques developed for osteoarthritis evaluation. Cartilage compositional MRI methods are described with a detailed discussion on relaxometric mapping (T 2 , T 2 *, T 1ρ ) without contrast agents. Methods to assess inflammation are described, including perfusion imaging, volume and signal changes, contrast-enhanced T 1 mapping, and semiquantitative scoring systems. Quantitative characterization of structure and function by bone shape modeling and joint kinematics are described. Muscle evaluation by qMRI is discussed, including size (area, volume), relaxometric mapping (T 1 , T 2 , T 1ρ ), fat fraction quantification, diffusion imaging, and metabolic assessment by 31 P-MR and creatine chemical exchange saturation transfer. Other notable technologies to support qMRI in musculoskeletal evaluation are described, including magnetic resonance fingerprinting, ultrashort echo time imaging, ultrahigh-field MRI, and hybrid MRI-positron emission tomography. Challenges for adopting and using qMRI in musculoskeletal evaluation are discussed, including the need for metal artifact suppression and qMRI standardization.
Competing Interests: Conflicts of interest and sources of funding: This work was funded in part by the following source: NIH/NIAMS T32AR007505, NIH/NIAMS K25AR078928, NIH/NIA K25AG070321, NIH/NIAMS R01AR075422, NIH/NIAMS R01AR077452, and the Arthritis Foundation. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the Arthritis Foundation.
(Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.)
References: Khodarahmi I, Fritz J. The value of 3 tesla field strength for musculoskeletal magnetic resonance imaging. Invest Radiol . 2021;56:749–763.
Verstraete KL, Almqvist F, Verdonk P, et al. Magnetic resonance imaging of cartilage and cartilage repair. Clin Radiol . 2004;59:674–689.
Loeser RF, Goldring SR, Scanzello CR, et al. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum . 2012;64:1697–1707.
Emanuel KS, Kellner LJ, Peters MJM, et al. The relation between the biochemical composition of knee articular cartilage and quantitative MRI: a systematic review and meta-analysis. Osteoarthritis Cartilage . 2021;30:650–662.
Rautiainen J, Nissi MJ, Salo EN, et al. Multiparametric MRI assessment of human articular cartilage degeneration: correlation with quantitative histology and mechanical properties. Magn Reson Med . 2015;74:249–259.
Link TM, Neumann J, Li X. Prestructural cartilage assessment using MRI. J Magn Reson Imaging . 2017;45:949–965.
Sveinsson B, Chaudhari AS, Gold GE, et al. A simple analytic method for estimating T2 in the knee from DESS. Magn Reson Imaging . 2017;38:63–70.
Cheng CC, Mei CS, Duryea J, et al. Dual-pathway multi-echo sequence for simultaneous frequency and T2 mapping. J Magn Reson . 2016;265:177–187.
Pai A, Li X, Majumdar S. A comparative study at 3 T of sequence dependence of T2 quantitation in the knee. Magn Reson Imaging . 2008;26:1215–1220.
Matzat SJ, McWalter EJ, Kogan F, et al. T2 relaxation time quantitation differs between pulse sequences in articular cartilage. J Magn Reson Imaging . 2015;42:105–113.
Heule R, Ganter C, Bieri O. Triple echo steady-state (TESS) relaxometry. Magn Reson Med . 2014;71:230–237.
Kumar NM, Fritz B, Stern SE, et al. Synthetic MRI of the knee: phantom validation and comparison with conventional MRI. Radiology . 2018;289:465–477.
Duvvuri U, Goldberg AD, Kranz JK, et al. Water magnetic relaxation dispersion in biological systems: the contribution of proton exchange and implications for the noninvasive detection of cartilage degradation. Proc Natl Acad Sci U S A . 2001;98:12479–12484.
Kettunen MI, Gröhn OH, Silvennoinen MJ, et al. Effects of intracellular pH, blood, and tissue oxygen tension on T1rho relaxation in rat brain. Magn Reson Med . 2002;48:470–477.
Cobb JG, Xie J, Gore JC. Contributions of chemical exchange to T1ρ dispersion in a tissue model. Magn Reson Med . 2011;66:1563–1571.
Akella SV, Regatte RR, Wheaton AJ, et al. Reduction of residual dipolar interaction in cartilage by spin-lock technique. Magn Reson Med . 2004;52:1103–1109.
Wang N, Xia Y. Experimental issues in the measurement of multi-component relaxation times in articular cartilage by microscopic MRI. J Magn Reson . 2013;235:15–25.
Li X, Han ET, Busse RF, et al. In vivo T(1rho) mapping in cartilage using 3D magnetization-prepared angle-modulated partitioned k-space spoiled gradient echo snapshots (3D MAPSS). Magn Reson Med . 2008;59:298–307.
Witschey WR, Borthakur A, Elliott MA, et al. T1rho-prepared balanced gradient echo for rapid 3D T1rho MRI. J Magn Reson Imaging . 2008;28:744–754.
Jordan CD, McWalter EJ, Monu UD, et al. Variability of CubeQuant T1ρ, quantitative DESS T2, and cones sodium MRI in knee cartilage. Osteoarthritis Cartilage . 2014;22:1559–1567.
Ma YJ, Carl M, Searleman A, et al. 3D adiabatic T1ρ prepared ultrashort echo time cones sequence for whole knee imaging. Magn Reson Med . 2018;80:1429–1439.
Wáng YX, Zhang Q, Li X, et al. T1ρ magnetic resonance: basic physics principles and applications in knee and intervertebral disc imaging. Quant Imaging Med Surg . 2015;5:858.
Wang L, Regatte RR. T(1)rho MRI of human musculoskeletal system. J Magn Reson Imaging . 2015;41:586–600.
Tanaka MS, Pedoia V, Chandramohan D, et al. Comparison of T1ρ quantification, SNR, and reproducibility in 3D magnetization-prepared angle-modulated partitioned k-space spoiled gradient echo snapshots (3D MAPSS) and 3D fast spin echo (CUBEQuant) techniques. Annual conference of International Society of Magnetic Resonance in Medicine (ISMRM). April 22–27, 2017.
Kim J, Mamoto K, Lartey R, et al. Multi-vendor multi-site T1rho and T2 quantification of knee cartilage. Osteoarthritis Cartilage . 2020;28:1539–1550.
Nissi MJ, Salo EN, Tiitu V, et al. Multi-parametric MRI characterization of enzymatically degraded articular cartilage. J Orthop Res . 2016;34:1111–1120.
Chalian M, Li X, Guermazi A, et al. The QIBA profile for MRI-based compositional imaging of knee cartilage. Radiology . 2021;301:423–432.
MacKay JW, Low SBL, Smith TO, et al. Systematic review and meta-analysis of the reliability and discriminative validity of cartilage compositional MRI in knee osteoarthritis. Osteoarthritis Cartilage . 2018;26:1140–1152.
Verschueren J, Eijgenraam SM, Klein S, et al. T2 mapping of healthy knee cartilage: multicenter multivendor reproducibility. Quant Imaging Med Surg . 2021;11:1247–1255.
Atkinson HF, Birmingham TB, Moyer RF, et al. MRI T2 and T1ρ relaxation in patients at risk for knee osteoarthritis: a systematic review and meta-analysis. BMC Musculoskelet Disord . 2019;20:182.
Joseph GB, Baum T, Alizai H, et al. Baseline mean and heterogeneity of MR cartilage T2 are associated with morphologic degeneration of cartilage, meniscus, and bone marrow over 3 years—data from the Osteoarthritis Initiative. Osteoarthritis Cartilage . 2012;20:727–735.
Prasad AP, Nardo L, Schooler J, et al. T 1 ρ and T 2 relaxation times predict progression of knee osteoarthritis. Osteoarthritis Cartilage . 2013;21:69–76.
Li AK, Pedoia V, Tanaka M, et al. Six-month post-surgical elevations in cartilage T1rho relaxation times are associated with functional performance 2 years after ACL reconstruction. J Orthop Res . 2020;38:1132–1140.
Amano K, Huebner JL, Stabler TV, et al. Synovial fluid profile at the time of anterior cruciate ligament reconstruction and its association with cartilage matrix composition 3 years after surgery. Am J Sports Med . 2018;46:890–899.
Su F, Pedoia V, Teng HL, et al. The association between MR T1rho and T2 of cartilage and patient-reported outcomes after ACL injury and reconstruction. Osteoarthritis Cartilage . 2016;24:1180–1189.
Baum T, Joseph GB, Karampinos DC, et al. Cartilage and meniscal T2 relaxation time as non-invasive biomarker for knee osteoarthritis and cartilage repair procedures. Osteoarthritis Cartilage . 2013;21:1474–1484.
Wang A, Pedoia V, Su F, et al. MR T1rho and T2 of meniscus after acute anterior cruciate ligament injuries. Osteoarthritis Cartilage . 2016;24:631–639.
Knox J, Pedoia V, Wang A, et al. Longitudinal changes in MR T1ρ/T2 signal of meniscus and its association with cartilage T1p/T2 in ACL-injured patients. Osteoarthritis Cartilage . 2018;26:689–696.
McQueen FM. A vital clue to deciphering bone pathology: MRI bone oedema in rheumatoid arthritis and osteoarthritis. Ann Rheum Dis . 2007;66:1549–1552.
Zanetti M, Bruder E, Romero J, et al. Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. Radiology . 2000;215:835–840.
Gorbachova T, Amber I, Beckmann NM, et al. Nomenclature of subchondral nonneoplastic bone lesions. AJR Am J Roentgenol . 2019;213:963–982.
Baker K, Grainger A, Niu J, et al. Relation of synovitis to knee pain using contrast-enhanced MRIs. Ann Rheum Dis . 2010;69:1779–1783.
Hunter DJ, Guermazi A, Lo GH, et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthritis Cartilage . 2011;19:990–1002.
Wang X, Blizzard L, Halliday A, et al. Association between MRI-detected knee joint regional effusion-synovitis and structural changes in older adults: a cohort study. Ann Rheum Dis . 2016;75:519–525.
Roemer FW, Jarraya M, Felson DT, et al. Magnetic resonance imaging of Hoffa's fat pad and relevance for osteoarthritis research: a narrative review. Osteoarthritis Cartilage . 2016;24:383–397.
Riis RGC, Gudbergsen H, Simonsen O, et al. The association between histological, macroscopic and magnetic resonance imaging assessed synovitis in end-stage knee osteoarthritis: a cross-sectional study. Osteoarthritis Cartilage . 2017;25:272–280.
Loeuille D, Sauliere N, Champigneulle J, et al. Comparing non-enhanced and enhanced sequences in the assessment of effusion and synovitis in knee OA: associations with clinical, macroscopic and microscopic features. Osteoarthritis Cartilage . 2011;19:1433–1439.
de Vries BA, Breda SJ, Sveinsson B, et al. Detection of knee synovitis using non-contrast-enhanced qDESS compared with contrast-enhanced MRI. Arthritis Res Ther . 2021;23:55.
Sandford HJ, MacKay JW, Watkins LE, et al. Gadolinium-free assessment of synovitis using diffusion tensor imaging. NMR Biomed . 2022;35:e4614.
Li X, Ma BC, Bolbos RI, et al. Quantitative assessment of bone marrow edema–like lesion and overlying cartilage in knees with osteoarthritis and anterior cruciate ligament tear using MR imaging and spectroscopic imaging at 3 tesla. J Magn Reson Imaging . 2008;28:453–461.
Mayerhoefer ME, Breitenseher MJ, Kramer J, et al. STIR vs. T1-weighted fat-suppressed gadolinium-enhanced MRI of bone marrow edema of the knee: computer-assisted quantitative comparison and influence of injected contrast media volume and acquisition parameters. J Magn Reson Imaging . 2005;22:788–793.
Burnett C, Wright P, Keenan A-M, et al. Magnetic resonance imaging of synovitis in knees of patients with osteoarthritis without injected contrast agents using T1 quantification. Radiography . 2018;24:283–288.
de Vries BA, van der Heijden RA, Verschueren J, et al. Quantitative subchondral bone perfusion imaging in knee osteoarthritis using dynamic contrast enhanced MRI. Semin Arthritis Rheum . 2020;50:177–182.
Liu J, Pedoia V, Heilmeier U, et al. High-temporospatial-resolution dynamic contrast-enhanced (DCE) wrist MRI with variable-density pseudo-random circular Cartesian undersampling (CIRCUS) acquisition: evaluation of perfusion in rheumatoid arthritis patients. NMR Biomed . 2016;29:15–23.
Romain B, Rouet L, Ohayon D, et al. Parameter estimation of perfusion models in dynamic contrast-enhanced imaging: a unified framework for model comparison. Med Image Anal . 2017;35:360–374.
Riis RGC, Gudbergsen H, Henriksen M, et al. Synovitis assessed on static and dynamic contrast-enhanced magnetic resonance imaging and its association with pain in knee osteoarthritis: a cross-sectional study. Eur J Radiol . 2016;85:1099–1108.
Shakoor D, Demehri S, Roemer FW, et al. Are contrast-enhanced and non-contrast MRI findings reflecting synovial inflammation in knee osteoarthritis: a meta-analysis of observational studies. Osteoarthritis Cartilage . 2020;28:126–136.
Cootes TF, Taylor CJ. Combining point distribution models with shape models based on finite element analysis. Image Vision Comput . 1995;13:403–409.
Lorensen WE, Cline HE. Marching cubes: a high resolution 3D surface construction algorithm. Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques. Association for Computing Machinery; 1987:163–169.
Arun KS, Huang TS, Blostein SD. Least-squares fitting of two 3-D point sets. IEEE Trans Pattern Anal Mach Intell . 1987;PAMI-9:698–700.
Goodall C. Procrustes methods in the statistical analysis of shape. J R Stat Soc B Methodol . 1991;53:285–339.
Avants BB, Tustison N, Song G. Advanced normalization tools (ANTS). Insight J . 2009;2:1–35.
Myronenko A, Song X. Point set registration: coherent point drift. IEEE Trans Pattern Anal Mach Intell . 2010;32:2262–2275.
Hill A, Taylor CJ, Brett AD. A framework for automatic landmark identification using a new method of nonrigid correspondence. IEEE Trans Pattern Anal Mach Intell . 2000;22:241–251.
De la Torre F, Black MJ. A framework for robust subspace learning. Int J Comput Vis . 2003;54:117–142.
Hunter DJ, Deveza LA, Collins JE, et al. Multivariable modeling of biomarker data from the phase I foundation for the National Institutes of Health Osteoarthritis Biomarkers Consortium. Arthritis Care Res (Hoboken) . 2022;74:1142–1153.
Pedoia V, Lansdown DA, Zaid M, et al. Three-dimensional MRI-based statistical shape model and application to a cohort of knees with acute ACL injury. Osteoarthritis Cartilage . 2015;23:1695–1703.
Zhong Q, Pedoia V, Tanaka M, et al. 3D bone-shape changes and their correlations with cartilage T1ρ and T2 relaxation times and patient-reported outcomes over 3-years after ACL reconstruction. Osteoarthritis Cartilage . 2019;27:915–921.
Bowes MA, Lohmander LS, Wolstenholme CBH, et al. Marked and rapid change of bone shape in acutely ACL injured knees—an exploratory analysis of the Kanon trial. Osteoarthritis Cartilage . 2019;27:638–645.
Barr AJ, Dube B, Hensor EM, et al. The relationship between three-dimensional knee MRI bone shape and total knee replacement-a case control study: data from the Osteoarthritis Initiative. Rheumatology (Oxford) . 2016;55:1585–1593.
Wilson DAJ, Anglin C, Ambellan F, et al. Validation of three-dimensional models of the distal femur created from surgical navigation point cloud data for intraoperative and postoperative analysis of total knee arthroplasty. Int J Comput Assist Radiol Surg . 2017;12:2097–2105.
Liao T-C, Jergas H, Tibrewala R, et al. Longitudinal analysis of the contribution of 3D patella and trochlear bone shape on patellofemoral joint osteoarthritic features. J Orthop Res . 2021;39:506–515.
Inamdar G, Pedoia V, Rossi-Devries J, et al. MR study of longitudinal variations in proximal femur 3D morphological shape and associations with cartilage health in hip osteoarthritis. J Orthop Res . 2019;37:161–170.
Lansdown DA, Allen C, Zaid M, et al. A comprehensive in vivo kinematic, quantitative MRI and functional evaluation following ACL reconstruction—a comparison between mini-two incision and anteromedial portal femoral tunnel drilling. Knee . 2015;22:547–553.
Vignos MF, Smith CR, Roth JD, et al. Anterior cruciate ligament graft tunnel placement and graft angle are primary determinants of internal knee mechanics after reconstructive surgery. Am J Sports Med . 2020;48:3503–3514.
Shen A, Boden BP, Grant C, et al. Adolescents and adults with patellofemoral pain exhibit distinct patellar maltracking patterns. Clin Biomech (Bristol, Avon) . 2021;90:105481.
Behnam AJ, Herzka DA, Sheehan FT. Assessing the accuracy and precision of musculoskeletal motion tracking using cine-PC MRI on a 3.0T platform. J Biomech . 2011;44:193–197.
Lansdown DA, Pedoia V, Zaid M, et al. Variations in knee kinematics after ACL injury and after reconstruction are correlated with bone shape differences. Clin Orthop Relat Res . 2017;475:2427–2435.
Biyani R, Elias JJ, Saranathan A, et al. Anatomical factors influencing patellar tracking in the unstable patellofemoral joint. Knee Surg Sports Traumatol Arthrosc . 2014;22:2334–2341.
Fick CN, Grant C, Sheehan FT. Patellofemoral pain in adolescents: understanding patellofemoral morphology and its relationship to maltracking. Am J Sports Med . 2020;48:341–350.
Springer I, Müller M, Hamm B, et al. Intra- and interobserver variability of magnetic resonance imaging for quantitative assessment of abductor and external rotator muscle changes after total hip arthroplasty. Eur J Radiol . 2012;81:928–933.
Kakehi S, Tamura Y, Takeno K, et al. Increased intramyocellular lipid/impaired insulin sensitivity is associated with altered lipid metabolic genes in muscle of high responders to a high-fat diet. Am J Physiol Endocrinol Metab . 2016;310:E32–E40.
Kořínek R, Gajdošík M, Trattnig S, et al. Low-level fat fraction quantification at 3 T: comparative study of different tools for water-fat reconstruction and MR spectroscopy. MAGMA . 2020;33:455–468.
Kumar D, Karampinos DC, MacLeod TD, et al. Quadriceps intramuscular fat fraction rather than muscle size is associated with knee osteoarthritis. Osteoarthritis Cartilage . 2014;22:226–234.
Grimm A, Meyer H, Nickel MD, et al. A comparison between 6-point Dixon MRI and MR spectroscopy to quantify muscle fat in the thigh of subjects with sarcopenia. J Frailty Aging . 2019;8:21–26.
Nozaki T, Tasaki A, Horiuchi S, et al. Predicting retear after repair of full-thickness rotator cuff tear: two-point Dixon MR imaging quantification of fatty muscle degeneration-initial experience with 1-year follow-up. Radiology . 2016;280:500–509.
Kiefer LS, Fabian J, Rospleszcz S, et al. Distribution patterns of intramyocellular and extramyocellular fat by magnetic resonance imaging in subjects with diabetes, prediabetes and normoglycaemic controls. Diabetes Obes Metab . 2021;23:1868–1878.
Martel D, Honig S, Monga A, et al. Analysis of muscle, hip, and subcutaneous fat in osteoporosis patients with varying degrees of fracture risk using 3T chemical shift encoded MRI. Bone Rep . 2020;12:100259.
Marty B, Carlier PG. Physiological and pathological skeletal muscle T1 changes quantified using a fast inversion-recovery radial NMR imaging sequence. Sci Rep . 2019;9:6852.
Peng XG, Wang Y, Zhang S, et al. Noninvasive assessment of age, gender, and exercise effects on skeletal muscle: initial experience with T1 ρ MRI of calf muscle. J Magn Reson Imaging . 2017;46:61–70.
Marty B, Coppa B, Carlier PG. Monitoring skeletal muscle chronic fatty degenerations with fast T1-mapping. Eur Radiol . 2018;28:4662–4668.
Carlier PG. Global T2 versus water T2 in NMR imaging of fatty infiltrated muscles: different methodology, different information and different implications. Neuromuscul Disord . 2014;24:390–392.
Holl N, Echaniz-Laguna A, Bierry G, et al. Diffusion-weighted MRI of denervated muscle: a clinical and experimental study. Skeletal Radiol . 2008;37:1111–1117.
Zaraiskaya T, Kumbhare D, Noseworthy MD. Diffusion tensor imaging in evaluation of human skeletal muscle injury. J Magn Reson Imaging . 2006;24:402–408.
Bandak E, Boesen M, Bliddal H, et al. Associations between muscle perfusion and symptoms in knee osteoarthritis: a cross sectional study. Osteoarthritis Cartilage . 2015;23:1721–1727.
Suo S, Zhang L, Tang H, et al. Evaluation of skeletal muscle microvascular perfusion of lower extremities by cardiovascular magnetic resonance arterial spin labeling, blood oxygenation level-dependent, and intravoxel incoherent motion techniques. J Cardiovasc Magn Reson . 2018;20:18.
Zheng J, Li R, Zayed MA, et al. Pilot study of contrast-free MRI reveals significantly impaired calf skeletal muscle perfusion in diabetes with incompressible peripheral arteries. Vasc Med . 2021;26:367–373.
Cannon DT, Howe FA, Whipp BJ, et al. Muscle metabolism and activation heterogeneity by combined 31P chemical shift and T2 imaging, and pulmonary O 2 uptake during incremental knee-extensor exercise. J Appl Physiol . 2013;115:839–849.
Meyerspeer M, Boesch C, Cameron D, et al. 31P magnetic resonance spectroscopy in skeletal muscle: experts' consensus recommendations. NMR Biomed . 2021;34:e4246.
Kogan F, Haris M, Singh A, et al. Method for high-resolution imaging of creatine in vivo using chemical exchange saturation transfer. Magn Reson Med . 2014;71:164–172.
Di Pietro G, Scimeca M, Iundusi R, et al. Differences between muscle from osteoporotic and osteoarthritic subjects: in vitro study by diffusion-tensor MRI and histological findings. Aging Clin Exp Res . 2020;32:2489–2499.
Bandak E, Boesen M, Bliddal H, et al. Exercise-induced pain changes associate with changes in muscle perfusion in knee osteoarthritis: exploratory outcome analyses of a randomised controlled trial. BMC Musculoskelet Disord . 2019;20:491.
Choi S, Reiter DA, Shardell M, et al. 31P magnetic resonance spectroscopy assessment of muscle bioenergetics as a predictor of gait speed in the Baltimore longitudinal study of aging. J Gerontol A Biol Sci Med Sci . 2016;71:1638–1645.
Chang EY, Du J, Chung CB. UTE imaging in the musculoskeletal system. J Magn Reson Imaging . 2015;41:870–883.
Cloos MA, Knoll F, Zhao T, et al. Multiparametric imaging with heterogeneous radiofrequency fields. Nat Commun . 2016;7:12445.
MacKay JW, Watkins L, Gold G, et al. [ 18 F]NaF PET-MRI provides direct in-vivo evidence of the association between bone metabolic activity and adjacent synovitis in knee osteoarthritis: a cross-sectional study. Osteoarthritis Cartilage . 2021;29:1155–1162.
Reiter DA, Lin PC, Fishbein KW, et al. Multicomponent T2 relaxation analysis in cartilage. Magn Reson Med . 2009;61:803–809.
Wang N, Xia Y. Dependencies of multi-component T2 and T1ρ relaxation on the anisotropy of collagen fibrils in bovine nasal cartilage. J Magn Reson . 2011;212:124–132.
Liu F, Choi KW, Samsonov A, et al. Articular cartilage of the human knee joint: in vivo multicomponent T2 analysis at 3.0 T. Radiology . 2015;277:477–488.
Sharafi A, Xia D, Chang G, et al. Biexponential T1ρ relaxation mapping of human knee cartilage in vivo at 3 T. NMR Biomed . 2017;30:e3760.
Grondin MM, Liu F, Vignos MF, et al. Bi-component T2 mapping correlates with articular cartilage material properties. J Biomech . 2021;116:110215.
Ma Y-J, High RA, Tang Q, et al. AcidoCEST-UTE MRI for the assessment of extracellular pH of joint tissues at 3 T. Invest Radiol . 2019;54:565–571.
Tippareddy C, Zhao W, Sunshine JL, et al. Magnetic resonance fingerprinting: an overview. Eur J Nucl Med Mol Imaging . 2021;48:4189–4200.
Reichert M, Ai T, Morelli J, et al. Metal artefact reduction in MRI at both 1.5 and 3.0 T using slice encoding for metal artefact correction and view angle tilting. Br J Radiol . 2015;88:20140601.
Juras V, Mlynarik V, Szomolanyi P, et al. Magnetic resonance imaging of the musculoskeletal system at 7 T: morphological imaging and beyond. Top Magn Reson Imaging . 2019;28:125–135.
Menon RG, Chang G, Regatte RR. Musculoskeletal MR imaging applications at ultra-high (7T) field strength. Magn Reson Imaging Clin N Am . 2021;29:117–127.
Singh A, Haris M, Cai K, et al. Chemical exchange saturation transfer magnetic resonance imaging of human knee cartilage at 3 T and 7 T. Magn Reson Med . 2012;68:588–594.
Zbýn Š, Schreiner M, Juras V, et al. Assessment of low-grade focal cartilage lesions in the knee with sodium MRI at 7 T: reproducibility and short-term, 6-month follow-up data. Invest Radiol . 2020;55:430–437.
Tibrewala R, Pedoia V, Bucknor M, et al. Principal component analysis of simultaneous PET-MRI reveals patterns of bone-cartilage interactions in osteoarthritis. J Magn Reson Imaging . 2020;52:1462–1474.
معلومات مُعتمدة: K25 AR078928 United States AR NIAMS NIH HHS; R01 AR077452 United States AR NIAMS NIH HHS; T32 AR007505 United States AR NIAMS NIH HHS; K25 AG070321 United States AG NIA NIH HHS; R01 AR075422 United States AR NIAMS NIH HHS
تواريخ الأحداث: Date Created: 20220927 Date Completed: 20221216 Latest Revision: 20240102
رمز التحديث: 20240102
مُعرف محوري في PubMed: PMC10198374
DOI: 10.1097/RLI.0000000000000909
PMID: 36165880
قاعدة البيانات: MEDLINE
الوصف
تدمد:1536-0210
DOI:10.1097/RLI.0000000000000909