دورية أكاديمية

A galactoside-specific Dalbergieae legume lectin from seeds of Vataireopsis araroba (Aguiar) Ducke.

التفاصيل البيبلوغرافية
العنوان: A galactoside-specific Dalbergieae legume lectin from seeds of Vataireopsis araroba (Aguiar) Ducke.
المؤلفون: Osterne VJS; Laboratory for Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, 9000, Ghent, Belgium., Oliveira MV; Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60455-760, Fortaleza, Brazil., De Schutter K; Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, 9000, Ghent, Belgium., Serna S; Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182, 20014, San Sebastian, Spain., Reichardt NC; Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182, 20014, San Sebastian, Spain.; CIBER-BBN, 20009, San Sebastian, Spain., Smagghe G; Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, 9000, Ghent, Belgium., Cavada BS; Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60455-760, Fortaleza, Brazil., Van Damme EJM; Laboratory for Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, 9000, Ghent, Belgium. ElsJM.VanDamme@UGent.be., Nascimento KS; Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60455-760, Fortaleza, Brazil. kyriasantiago@ufc.br.
المصدر: Glycoconjugate journal [Glycoconj J] 2023 Feb; Vol. 40 (1), pp. 85-95. Date of Electronic Publication: 2022 Oct 26.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 8603310 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-4986 (Electronic) Linking ISSN: 02820080 NLM ISO Abbreviation: Glycoconj J Subsets: MEDLINE
أسماء مطبوعة: Publication: <2008->: Norwell, MA : Springer
Original Publication: [Lund : The Journal, c1984-
مواضيع طبية MeSH: Lectins*/metabolism , Fabaceae*/chemistry , Fabaceae*/metabolism, Animals ; Drosophila melanogaster ; Carbohydrates/analysis ; Seeds/chemistry ; Polysaccharides/metabolism ; Galactosides/analysis ; Galactosides/metabolism ; Plant Lectins/chemistry
مستخلص: The Dalbergieae lectin group encompasses several lectins with significant differences in their carbohydrate specificities and biological properties. The current work reports on the purification and characterization of a GalNAc/Gal-specific lectin from Vataireopsis araroba (Aguiar) Ducke, designated as VaL. The lectin was purified from the seeds in a single step using guar gum affinity chromatography. The lectin migrated as a single band of about 35 kDa on SDS-PAGE and, in native conditions, occurs as a homodimer. The purified lectin is stable at temperatures up to 60 °C and in a pH range from 7 to 8 and requires divalent cations for its activity. Sugar-inhibition assays demonstrate the lectin specificity towards N-acetyl-D-galactosamine, D-galactose and related sugars. Furthermore, glycan array analyses show that VaL interacts preferentially with glycans containing terminal GalNAc/Galβ1-4GlcNAc. Biological activity assays were performed using three insect cell lines: CF1 midgut cells from the spruce budworm Choristoneura fumiferana, S2 embryo cells from the fruit fly Drosophila melanogaster, and GutAW midgut cells from the corn earworm Helicoverpa zea. In vitro assays indicated a biostatic effect for VaL on CF1 cells, but not on S2 and GutAW cells. The lectin presented a biostatic effect by reducing the cell growth and inducing cell agglutination, suggesting an interaction with glycans on the cell surface. VaL has been characterized as a galactoside-specific lectin of the Dalbergieae tribe, with sequence similarity to lectins from Vatairea and Arachis.
(© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Ambrosi, M., Cameron, N.R., Davis, B.G.: Lectins: tools for the molecular understanding of the glycocode. Org. Biomol. Chem. 3, 1593–1608 (2005). https://doi.org/10.1039/b414350g. (PMID: 10.1039/b414350g15858635)
Peumans, W.J., Van Damme, E.J.M.: Lectins as Plant Defense Proteins. Plant. Physiol. 109, 347–352 (1995). https://doi.org/10.1104/pp.109.2.347. (PMID: 10.1104/pp.109.2.3471575967480335)
Tsaneva, M., Van Damme, E.J.M.: 130 years of Plant Lectin Research. Glycoconj. J. 37, 533–551 (2020). https://doi.org/10.1007/s10719-020-09942-y. (PMID: 10.1007/s10719-020-09942-y745578432860551)
Komath, S.S., Kavitha, M., Swamy, M.J.: Beyond carbohydrate binding: new directions in plant lectin research. Org. Biomol. Chem. 4, 973–988 (2006). https://doi.org/10.1039/b515446d. (PMID: 10.1039/b515446d16525538)
De Coninck, T., Van Damme, E.J.M.: The multiple roles of plant lectins. Plant. Sci. 313, 111096 (2021). https://doi.org/10.1016/j.plantsci.2021.111096. (PMID: 10.1016/j.plantsci.2021.11109634763880)
Araripe, D.A., Pinto-Junior, V.R., Neco, A.H.B., Santiago, M.Q., Osterne, V.J.S., Pires, A.F., Lossio, C.F., Martins, M.G.Q., Correia, J.L.A., Benevides, R.G., Leal, R.B., Assreuy, A.M.S., Nascimento, K.S., Cavada, B.S.: Partial characterization and immobilization in CNBr-activated Sepharose of a native lectin from Platypodium elegans seeds (PELa) and comparative study of edematogenic effect with the recombinant form. Int. J. Biol. Macromol. 102, 323–330 (2017). https://doi.org/10.1016/j.ijbiomac.2017.03.193. (PMID: 10.1016/j.ijbiomac.2017.03.19328380332)
Alencar, N.M.N., Assreuy, A.M.S., Alencar, V.B.M., Melo, S.C., Ramos, M.V., Cavada, B.S., Cunha, F.Q., Ribeiro, R.A.: The galactose-binding lectin from Vatairea macrocarpa seeds induces in vivo neutrophil migration by indirect mechanism. Int. J. Biochem. Cell. Biol. 35, 1674–1681 (2003). https://doi.org/10.1016/s1357-2725(03)00138-9. (PMID: 10.1016/s1357-2725(03)00138-912962707)
Marques, G.F.O., Pires, A.F., Osterne, V.J.S., Pinto-Junior, V.R., Silva, I.B., Martins, M.G.Q., Oliveira, M.V., Gomes, A.M., de Souza, L.A.G., Pavão, M.S.G., Cavada, B.S., Assreuy, A.M.S., Nascimento, K.S.: Vatairea guianensis lectin stimulates changes in gene expression and release of TNF-α from rat peritoneal macrophages via glycoconjugate binding. J. Mol. Recognit. 34, 1–10 (2021). https://doi.org/10.1002/jmr.2922. (PMID: 10.1002/jmr.2922)
De Freitas Pires, A., Bezerra, M.M., Amorim, R.M.F., do Nascimento, F.L.F., Marinho, M.M., Moura, R.M., Silva, M.T.L., Correia, J.L.A., Cavada, B.S., Assreuy, A.M.S., Nascimento, K.S.: Lectin purified from Lonchocarpus campestris seeds inhibits inflammatory nociception. Int. J. Biol. Macromol. 125, 53–60 (2019). https://doi.org/10.1016/j.ijbiomac.2018.11.233. (PMID: 10.1016/j.ijbiomac.2018.11.23330500503)
Avichezer, D., Arnon, R.: Differential reactivities of the Arachis hypogaea (peanut) and Vicia villosa B4 lectins with human ovarian carcinoma cells, grown either in vitro or in vivo xenograft model. FEBS Lett. 395, 103–108 (1996). https://doi.org/10.1016/0014-5793(96)01010-1. (PMID: 10.1016/0014-5793(96)01010-18898074)
Li, X.-T., He, M.-L., Zhou, Z.-Y., Jiang, Y., Cheng, L.: The antitumor activity of PNA modified vinblastine cationic liposomes on Lewis lung tumor cells: In vitro and in vivo evaluation. Int. J. Pharm. 487, 223–233 (2015). https://doi.org/10.1016/j.ijpharm.2015.04.035. (PMID: 10.1016/j.ijpharm.2015.04.03525895716)
Nascimento, K.S., Silva, M.T.L., Oliveira, M.V., Lossio, C.F., Pinto-Junior, V.R., Osterne, V.J.S., Cavada, B.S.: Dalbergieae lectins: A review of lectins from species of a primitive Papilionoideae (leguminous) tribe. Int. J. Biol. Macromol. 144, 509–526 (2020). https://doi.org/10.1016/j.ijbiomac.2019.12.117. (PMID: 10.1016/j.ijbiomac.2019.12.11731857177)
Reyes-Montaño, E.A., Vega-Castro, N.A.: Plant Lectins with Insecticidal and Insectistatic Activities. Insecticides - Agriculture and Toxicology, pp. 17–41 (2018). https://doi.org/10.5772/intechopen.74962.
Walski, T., De Schutter, K., Cappelle, K., Van Damme, E.J.M., Smagghe, G.: Distribution of Glycan Motifs at the Surface of Midgut Cells in the Cotton Leafworm Demonstrated by Lectin Binding. Front. Physiol. 8, 1020 (2017). https://doi.org/10.3389/fphys.2017.01020. (PMID: 10.3389/fphys.2017.01020572709329276491)
De Lima, H.C.: Revisão taxonômica do gênero Vataireopsis Ducke (Leg. Fab.). Ducke (Leg. Fab.). Rodriguésia. 32, 21–40 (1980). https://doi.org/10.1590/2175-78601980325404.
Valle, M.L.A., de Sousa Aleluia Santos, B., Jardim, J.G.: A xiloteca do Centro de Pesquisas do Cacau e as madeiras da Mata Atlântica. Mata Atlântica. Paubrasilia. 2(2), 7–13 (2019). https://doi.org/10.33447/paubrasilia.v2i2.28. (PMID: 10.33447/paubrasilia.v2i2.28)
Christoforo, A.L., de Moura Aquino, V.B., Govone, J.S., Dias, A.M.P., Panzera, T.H., Lahr, F.A.R.: Alternative model to determine the characteristic strength value of wood in the compression parallel to the grain. Maderas. Ciencia y tecnología. 22(3), 281–290 (2020). https://doi.org/10.4067/s0718-221x2020005000303. (PMID: 10.4067/s0718-221x2020005000303)
Kerkhof, P.C.M.V.D., Van De Kerkhof, P.C.M., Van Der Valk, P.G.M., Swinkels, O.Q.J., Kucharekova, M., De Rie, M.A., De Vries, H.J.C., Damstra, R., De Waard-van der Oranje, A.P., Van Neer, P., Lijnen, R.L.P., Kunkeler, A.C.M., Van Hees, C., Haertlein, N.G.J., Hol, C.W.: A comparison of twice-daily calcipotriol ointment with once-daily short-contact dithranol cream therapy: a randomized controlled trial of supervised treatment of psoriasis vulgaris in a day-care setting. Br. J. Dermatology. 155, 800–807 (2006). https://doi.org/10.1111/j.1365-2133.2006.07393.x. (PMID: 10.1111/j.1365-2133.2006.07393.x)
Hoffmann, J., Gendrisch, F., Schempp, C.M., Wölfle, U.: New Herbal Biomedicines for the Topical Treatment of Dermatological Disorders. Biomedicines. 8 (2020). https://doi.org/10.3390/biomedicines8020027.
Cavada, B.S., Bari, A.U., Pinto-Junior, V.R., Lossio, C.F., Silva, M.T.L., Souza, L.A.G., Oliveira, M.V., Souza-Filho, C.H.D., Correia, S.E.G., Lima, L.D., Osterne, V.J.S., Nascimento, K.S.: Purification and partial characterization of a new lectin from Parkia panurensis Benth. ex H.C. Hopkins seeds (Leguminosae family; Mimosoideae subfamily) and evaluation of its biological effects. Int. J. Biol. Macromol. 145, 845–855 (2020). https://doi.org/10.1016/j.ijbiomac.2019.10.102.
Cavada, B.S., Santos, C.F., Grangeiro, T.B., Nunes, E.P., Sales, P.V., Ramos, R.L., De Sousa, F.A., Crisostomo, C.V., Calvete, J.J.: Purification and characterization of a lectin from seeds of Vatairea macrocarpa Duke. Phytochemistry. 49, 675–680 (1998). https://doi.org/10.1016/s0031-9422(98)00144-7. (PMID: 10.1016/s0031-9422(98)00144-79779593)
Silva, H.C., Nagano, C.S., Souza, L.A.G., Nascimento, K.S., Isídro, R., Delatorre, P., Rocha, B.A.M., Sampaio, A.H., Assreuy, A.M.S., Pires, A.F., Damasceno, L.E.A., Marques-Domingos, G.F.O., Cavada, B.S.: Purification and primary structure determination of a galactose-specific lectin from Vatairea guianensis Aublet seeds that exhibits vasorelaxant effect. Process. Biochem. 47, 2347–2355 (2012). https://doi.org/10.1016/j.procbio.2012.09.014. (PMID: 10.1016/j.procbio.2012.09.014)
Sultan, N.A.M., Kenoth, R., Swamy, M.J.: Purification, physicochemical characterization, saccharide specificity, and chemical modification of a Gal/GalNAc specific lectin from the seeds of Trichosanthes dioica. Arch. Biochem. Biophys. 432, 212–221 (2004). https://doi.org/10.1016/j.abb.2004.09.016. (PMID: 10.1016/j.abb.2004.09.01615542060)
Datta, D., Pohlentz, G., Schulte, M., Kaiser, M., Goycoolea, F.M., Müthing, J., Mormann, M., Swamy, M.J.: Physico-chemical characteristics and primary structure of an affinity-purified α-D-galactose-specific, jacalin-related lectin from the latex of mulberry (Morus indica). Arch. Biochem. Biophys. 609, 59–68 (2016). https://doi.org/10.1016/j.abb.2016.09.009. (PMID: 10.1016/j.abb.2016.09.00927664852)
Appukuttan, P.S., Surolia, A., Bachawat, B.K.: Isolation of two galactose-binding proteins from Ricinus communis by affinity chromatography. Indian J. Biochem. Biophys. 14, 382–384 (1977). (PMID: 615111)
Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680–685 (1970). https://doi.org/10.1038/227680a0. (PMID: 10.1038/227680a05432063)
Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976). https://doi.org/10.1006/abio.1976.9999. (PMID: 10.1006/abio.1976.9999942051)
Zacharius, R.M., Zell, T.E., Morrison, J.H., Woodlock, J.J.: Glycoprotein staining following electrophoresis on acrylamide gels. Anal. Biochem. 30, 148–152 (1969). https://doi.org/10.1016/0003-2697(69)90383-2. (PMID: 10.1016/0003-2697(69)90383-24183001)
DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 28(3), 350–356 (1956). https://doi.org/10.1021/ac60111a017. (PMID: 10.1021/ac60111a017)
Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V., Mann, M.: In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860 (2006). https://doi.org/10.1038/nprot.2006.468. (PMID: 10.1038/nprot.2006.46817406544)
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990). https://doi.org/10.1016/s0022-2836(05)80360-2. (PMID: 10.1016/s0022-2836(05)80360-22231712)
Robert, X., Gouet, P.: Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research. 42, 320–324 (2014). https://doi.org/10.1093/nar/gku316. (PMID: 10.1093/nar/gku316)
Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J.D., Higgins, D.G.: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011). https://doi.org/10.1038/msb.2011.75. (PMID: 10.1038/msb.2011.75326169921988835)
Brzezicka, K., Echeverria, B., Serna, S., van Diepen, A., Hokke, C.H., Reichardt, N.-C.: Synthesis and microarray-assisted binding studies of core xylose and fucose containing N-glycans. ACS Chem. Biol. 10, 1290–1302 (2015). https://doi.org/10.1021/cb501023u. (PMID: 10.1021/cb501023u25664929)
Smagghe, G.J., Elsen, K., Loeb, M.J., Gelman, D.B., Blackburn, M.: Effects of a fat body extract on larval midgut cells and growth of Lepidoptera. In Vitro Cell. Dev. Biol. Anim. 39, 8–12 (2003). https://doi.org/10.1290/1543-706X(2003)0390008:EOAFBE2.0.CO;2. (PMID: 10.1290/1543-706X(2003)0390008:EOAFBE2.0.CO;212892521)
Smagghe, G., Goodman, C.L., Stanley, D.: Insect cell culture and applications to research and pest management. In Vitro Cellular & Developmental Biology - Animal. 45, 93–105 (2009). https://doi.org/10.1007/s11626-009-9181-x.
Fu, C., Zhao, H., Wang, Y., Cai, H., Xiao, Y., Zeng, Y., Chen, H.: Tumor-associated antigens: Tn antigen, sTn antigen, and T antigen. Hladnikia. 88, 275–286 (2016). https://doi.org/10.1111/tan.12900. (PMID: 10.1111/tan.12900)
Law, I.J., Haylett, T., Strijdom, B.W.: Differences in properties of peanut seed lectin and purified galactose- and mannose-binding lectins from nodules of peanut. Planta. 176, 19–27 (1988). https://doi.org/10.1007/bf00392475. (PMID: 10.1007/bf0039247524220730)
Lotan, R., Skutelsky, E., Danon, D., Sharon, N.: The purification, composition, and specificity of the anti-T lectin from peanut (Arachis hypogaea). J. Biol. Chem. 250, 8518–8523 (1975). https://doi.org/10.1016/s0021-9258(19)40790-4. (PMID: 10.1016/s0021-9258(19)40790-4811657)
Singh, R., Das, H.R.: Purification of lectins from the stems of peanut plants. Glycoconj. J. 11, 282–285 (1994). https://doi.org/10.1007/BF00731199. (PMID: 10.1007/BF007311997873922)
Joubert, F.J., Sharon, N., Merrifield, E.H.: Purification and properties of a lectin from Lonchocarpus capassa (apple-leaf) seed. Phytochemistry. 25, 323–327 (1986). https://doi.org/10.1016/S0031-9422(00)85474-6. (PMID: 10.1016/S0031-9422(00)85474-6)
Alves Filho, J.G., do Nascimento, A.S.F., Gondim, A.C.S., Pereira, R.H., da Cunha, R.M.S., Nagano, C.S., Teixeira, E.H., Nascimento, K.S., Cavada, B.S.: Isoform characterisation, heterologous expression and functional analysis of two lectins from Vatairea macrocarpa. Protein Pept. Lett. 20, 1204–1210 (2013). (PMID: 10.2174/0929866511320999004923795620)
Lauwereys, M., Foriers, A., Sharor, N., Strosberg, A.D.: Sequence studies of peanut agglutinin. FEBS Lett. 181, 241–244 (1985). https://doi.org/10.1016/0014-5793(85)80267-2. (PMID: 10.1016/0014-5793(85)80267-2)
Young, N.M., Johnston, R.A., Watson, D.C.: The amino acid sequence of peanut agglutinin. Eur. J. Biochem. 196, 631–637 (1991). https://doi.org/10.1111/j.1432-1033.1991.tb15859.x. (PMID: 10.1111/j.1432-1033.1991.tb15859.x2013286)
Calvete, J.J., Santos, C.F., Mann, K., Grangeiro, T.B., Nimtz, M., Urbanke, C., Sousa-Cavada, B.: Amino acid sequence, glycan structure, and proteolytic processing of the lectin of Vatairea macrocarpa seeds. FEBS Lett. 425, 286–292 (1998). https://doi.org/10.1016/s0014-5793(98)00243-9. (PMID: 10.1016/s0014-5793(98)00243-99559667)
Van Damme, E.J., Barre, A., Rougé, P., Van Leuven, F., Peumans, W.J.: The seed lectins of black locust (Robinia pseudoacacia) are encoded by two genes which differ from the bark lectin genes. Plant. Mol. Biol. 29, 1197–1210 (1995). https://doi.org/10.1007/BF00020462. (PMID: 10.1007/BF000204628616218)
Sousa, B.L., Filho, J.C.S., Kumar, P., Pereira, R.I., Łyskowski, A., Rocha, B.A.M., Delatorre, P., Bezerra, G.A., Nagano, C.S., Gruber, K., Cavada, B.S.: High-resolution structure of a new Tn antigen-binding lectin from Vatairea macrocarpa and a comparative analysis of Tn-binding legume lectins. Int. J. Biochem. Cell Biol. 59, 103–110 (2015). https://doi.org/10.1016/j.biocel.2014.12.002. (PMID: 10.1016/j.biocel.2014.12.00225499445)
Calvete, J.J., Santos, C.F., Mann, K., Grangeiro, T.B., Nimtz, M., Sousa-Cavada, B.: Primary structure and posttranslational processing of Vatairea macrocarpa seed lectin. J. Protein Chem. 17, 545–547 (1998). https://doi.org/10.1016/S0014-5793(98)00243-9. (PMID: 10.1016/S0014-5793(98)00243-99723749)
Serna, S., Etxebarria, J., Ruiz, N., Martin-Lomas, M., Reichardt, N.-C.: Construction of N-glycan microarrays by using modular synthesis and on-chip nanoscale enzymatic glycosylation. Chemistry. 16, 13163–13175 (2010). https://doi.org/10.1002/chem.201001295. (PMID: 10.1002/chem.20100129520878803)
Echeverria, B., Serna, S., Achilli, S., Vivès, C., Pham, J., Thépaut, M., Hokke, C.H., Fieschi, F., Reichardt, N.-C.: Chemoenzymatic Synthesis of N-glycan Positional Isomers and Evidence for Branch Selective Binding by Monoclonal Antibodies and Human C-type Lectin Receptors. ACS Chem. Biol. 13, 2269–2279 (2018). https://doi.org/10.1021/acschembio.8b00431. (PMID: 10.1021/acschembio.8b0043129894153)
Hamshou, M., Smagghe, G., Shahidi-Noghabi, S., De Geyter, E., Lannoo, N., Van Damme, E.J.M.: Insecticidal properties of Sclerotinia sclerotiorum agglutinin and its interaction with insect tissues and cells. Insect Biochem. Mol. Biol. 40, 883–890 (2010). https://doi.org/10.1016/j.ibmb.2010.08.008. (PMID: 10.1016/j.ibmb.2010.08.00820826211)
Hamshou, M., Van Damme, E.J.M., Caccia, S., Cappelle, K., Vandenborre, G., Ghesquière, B., Gevaert, K., Smagghe, G.: High entomotoxicity and mechanism of the fungal GalNAc/Gal-specific Rhizoctonia solani lectin in pest insects. J. Insect Physiol. 59, 295–305 (2013). https://doi.org/10.1016/j.jinsphys.2012.12.003. (PMID: 10.1016/j.jinsphys.2012.12.00323291362)
Chen, P., De Schutter, K., Serna, S., Chen, S., Yang, Q., Reichardt, N.-C., Van Damme, E.J.M., Smagghe, G.: Glycosylation reduces the glycan-independent immunomodulatory effect of recombinant Orysata lectin in Drosophila S2 cells. Sci. Rep. 11, 17958 (2021). https://doi.org/10.1038/s41598-021-97161-2. (PMID: 10.1038/s41598-021-97161-2842954934504130)
Law, I.J., Kfir, R.: Effect of mannose-binding lectin from peanut and pea on the stem borer Chilo partellus. Entomol. Exp. Appl. 82, 261–265 (1997). https://doi.org/10.1046/j.1570-7458.1997.00139.x. (PMID: 10.1046/j.1570-7458.1997.00139.x)
Chen, P., De Schutter, K., Pauwels, J., Gevaert, K., Van Damme, E.J.M., Smagghe, G.: Binding of Orysata lectin induces an immune response in insect cells. Insect Sci. 29, 717–729 (2021). https://doi.org/10.1111/1744-7917.12968. (PMID: 10.1111/1744-7917.1296834473412)
Macedo, M.L.R., Oliveira, C.F.R., Oliveira, C.T.: Insecticidal activity of plant lectins and potential application in crop protection. Molecules. 20, 2014–2033 (2015). https://doi.org/10.3390/molecules20022014. (PMID: 10.3390/molecules20022014627252225633332)
فهرسة مساهمة: Keywords: Dalbergieae; Insect cells; Lectin; Vataireopsis araroba
المشرفين على المادة: 0 (Lectins)
0 (Carbohydrates)
0 (Polysaccharides)
0 (Galactosides)
0 (Plant Lectins)
تواريخ الأحداث: Date Created: 20221026 Date Completed: 20230215 Latest Revision: 20240702
رمز التحديث: 20240702
DOI: 10.1007/s10719-022-10082-8
PMID: 36287345
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-4986
DOI:10.1007/s10719-022-10082-8