دورية أكاديمية

Safety, Pharmacokinetics, and Biomarkers of an Amorphous Solid Dispersion of Genistein, a Radioprotectant, in Healthy Volunteers.

التفاصيل البيبلوغرافية
العنوان: Safety, Pharmacokinetics, and Biomarkers of an Amorphous Solid Dispersion of Genistein, a Radioprotectant, in Healthy Volunteers.
المؤلفون: Serebrenik AA; Humanetics Corporation, Minneapolis, Minnesota, USA., Verduyn CW; Medical Monitoring Consultancy, LLC, St. Paul, Minnesota, USA., Kaytor MD; Humanetics Corporation, Minneapolis, Minnesota, USA.
المصدر: Clinical pharmacology in drug development [Clin Pharmacol Drug Dev] 2023 Feb; Vol. 12 (2), pp. 190-201. Date of Electronic Publication: 2022 Oct 27.
نوع المنشور: Journal Article; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: United States NLM ID: 101572899 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2160-7648 (Electronic) Linking ISSN: 2160763X NLM ISO Abbreviation: Clin Pharmacol Drug Dev Subsets: MEDLINE
أسماء مطبوعة: Publication: 2013- : Hoboken, NJ : Wiley
Original Publication: Thousand Oaks, Calif. : Sage Publications, c2012-
مواضيع طبية MeSH: Genistein*/adverse effects , Genistein*/blood , Genistein*/pharmacokinetics , Radiation-Protective Agents*/adverse effects , Radiation-Protective Agents*/pharmacokinetics, Humans ; Biological Availability ; Biomarkers/blood ; Drug Compounding/methods ; Healthy Volunteers
مستخلص: A pharmaceutical formulation of genistein, produced as an amorphous solid dispersion by hot melt extrusion (genistein HME), has been developed that can be administered prophylactically to improve outcomes and survival following radiation exposure. Here, genistein HME was evaluated in a phase 1, open-label, single ascending dose (SAD) and multiple single dose (MSD) study enrolling 34 healthy volunteers. In the SAD study, participants were administered a single dose (500, 1000, 2000, or 3000 mg) and in the MSD study, participants were administered a single daily dose for six consecutive days (3000 mg/day). The overall adverse event profile and pharmacokinetics of genistein HME were determined. Additionally, biomarkers of genistein HME were evaluated by profiling whole blood for changes in gene expression by RNA sequencing. Genistein HME was found to be safe at doses up to 3000 mg. Most toxicities were mild to moderate gastrointestinal events, and no dose-limiting toxicities were reported. The maximum tolerated dose was not determined and the no observable adverse effect level was 500 mg. Genistein HME bioavailability greatly increased between the 2000 mg and 3000 mg doses. RNA sequencing analysis revealed that the majority of drug-related changes in gene expression occurred 8-12 hours after the sixth dose in the MSD study. Based on these results, the putative effective dose in humans is 3000 mg.
(© 2022, The American College of Clinical Pharmacology.)
References: Singh VK, Seed TM. A review of radiation countermeasures focusing on injury-specific medicinals and regulatory approval status: part I. Radiation sub-syndromes, animal models and FDA-approved countermeasures. Int J Radiat Biol. 2017;93(9):851-869.
Day RM, Barshishat-Kupper M, Mog SR, et al. Genistein protects against biomarkers of delayed lung sequelae in mice surviving high-dose total body irradiation. J Radiat Res. 2008;49(4):361-372.
Landauer MR. Radioprotection by the soy isoflavone genistein. In: Arora R, ed. Herbal Radiomodulators: Applications in Medicine, Homeland Defense and Space. Wallingford, England: CABI Publishing; 2008:163-173.
Landauer MR, Harvey AJ, Kaytor MD, Day RM. Mechanism and therapeutic window of a genistein nanosuspension to protect against hematopoietic-acute radiation syndrome. J Radiat Res. 2019;60(3):308-317.
Landauer MR, Srinivasan V, Seed TM. Genistein treatment protects mice from ionizing radiation injury. J Appl Toxicol. 2003;23(6):379-385.
Singh VK, Seed TM. BIO 300: a promising radiation countermeasure under advanced development for acute radiation syndrome and the delayed effects of acute radiation exposure. Expert Opin Investig Drugs. 2020;29(5):429-441.
Wu J-G, Ge J, Zhang Y-P, Yu Y, Zhang X-Y. Solubility of genistein in water, methanol, ethanol, propan-2-ol, 1-butanol, and ethyl acetate from (280 to 333) K. J Chem Eng Data. 2010;55(11):5286-5288.
Yang Z, Kulkarni K, Zhu W, Hu M. Bioavailability and pharmacokinetics of genistein: mechanistic studies on its ADME. Anti-Cancer Agents Med Chem. 2012;12(10):1264-1280.
Cheema AK, Mehta KY, Santiago PT, Fatanmi OO, Kaytor MD, Singh VK. Pharmacokinetic and metabolomic studies with BIO 300, a nanosuspension of genistein, in a nonhuman primate model. Int J Mol Sci. 2019;20(5):1231.
Salem AM, Jackson IL, Gibbs A, et al. Interspecies comparison and radiation effect on pharmacokinetics of BIO 300, a nanosuspension of genistein, after different routes of administration in mice and non-human primates. Radiat Res. 2022;197(5):447-458.
Singh VK, Fatanmi OO, Wise SY, et al. A novel oral formulation of BIO 300 confers prophylactic radioprotection from acute radiation syndrome in mice. Int J Radiat Biol. 2021;98(5):958-967.
Ha CT, Li XH, Fu D, Xiao M, Landauer MR. Genistein nanoparticles protect mouse hematopoietic system and prevent proinflammatory factors after gamma irradiation. Radiat Res. 2013;180(3):316-325.
Cheema AK, Li Y, Singh J, et al. Microbiome study in irradiated mice treated with BIO 300, a promising radiation countermeasure. Anim Microbiome. 2021;3(1):71.
Warner M, Huang B, Gustafsson JA. Estrogen receptor beta as a pharmaceutical target. Trends Pharmacol Sci. 2017;38(1):92-99.
Mal R, Magner A, David J, et al. Estrogen receptor beta (ERbeta): a ligand activated tumor suppressor. Front Oncol. 2020;10:587386.
Davis TA, Mungunsukh O, Zins S, Day RM, Landauer MR. Genistein induces radioprotection by hematopoietic stem cell quiescence. Int J Radiat Biol. 2008;84(9):713-726.
Guenther K, Balven-Ross H, Wyrich R. Development and optimization of a protocol for automated, low-throughput RNA purification from whole blood using the PAXgene blood RNA system. Clin. Cancer Res. 2014;13(22 Supplement):A44.
O'Neil D, Glowatz H, Schlumpberger M. Ribosomal RNA depletion for efficient use of RNA-seq capacity. Curr Protoc Mol Biol. 2013;4(4): 19.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114-2120.
Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21.
Liao Y, Smyth GK, Shi W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 2013;41(10):e108.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
Li Y, Girgis M, Jayatilake M, et al. Pharmacokinetic and metabolomic studies with a BIO 300 Oral Powder formulation in nonhuman primates. Sci Rep. 2022;12(1):13475.
Martin VT, Vij B. Diet and Headache: Part 1. Headache. 2016;56(9):1543-1552.
Ullmann U, Metzner J, Frank T, Cohn W, Riegger C. Safety, tolerability, and pharmacokinetics of single ascending doses of synthetic genistein (Bonistein) in healthy volunteers. Adv Ther. 2005;22(1):65-78.
Ullmann U, Oberwittle H, Grossmann M, Riegger C. Repeated oral once daily intake of increasing doses of the novel synthetic genistein product Bonistein in healthy volunteers. Planta medica. 2005;71(10):891-896.
Ghosh A, Rust S, Langford-Smith K, et al. High dose genistein in Sanfilippo syndrome: A randomised controlled trial. J Inherit Metab Dis. 2021;44(5):1248-1262.
Chiffoleau E. C-Type Lectin-like receptors as emerging orchestrators of sterile inflammation represent potential therapeutic targets. Front Immunol. 2018;9:227.
Chen GY, Nunez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10(12):826-837.
Kim HK, Kang MA, Kim MS, Shin YJ, Chi SG, Jeong JH. Transcriptional repression of high-mobility group box 2 by p21 in radiation-induced senescence. Mol Cells. 2018;41(4):362-372.
Guerrero A, Gil J. HMGB2 holds the key to the senescence-associated secretory phenotype. J Cell Biol. 2016;215(3):297-299.
Aird KM, Iwasaki O, Kossenkov AV, et al. HMGB2 orchestrates the chromatin landscape of senescence-associated secretory phenotype gene loci. J Cell Biol. 2016;215(3):325-334.
Xu L, Wang Y, Wang J, Zhai J, Ren L, Zhu G. Radiation-induced osteocyte senescence alters bone marrow mesenchymal stem cell differentiation potential via paracrine signaling. Int J Mol Sci. 2021;22(17):9323.
Laurent B, Randrianarison-Huetz V, Marechal V, Mayeux P, Dusanter-Fourt I, Dumenil D. High-mobility group protein HMGB2 regulates human erythroid differentiation through trans-activation of GFI1B transcription. Blood. 2010;115(3):687-695.
Zhang C, Fondufe-Mittendorf YN, Wang C, et al. Latexin regulation by HMGB2 is required for hematopoietic stem cell maintenance. Haematologica. 2020;105(3):573-584.
Zhang S, Hulver MW, McMillan RP, Cline MA, Gilbert ER. The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility. Nutr Metab (Lond). 2014;11(1):10.
Jeon JH, Thoudam T, Choi EJ, Kim MJ, Harris RA, Lee IK. Loss of metabolic flexibility as a result of overexpression of pyruvate dehydrogenase kinases in muscle, liver and the immune system: Therapeutic targets in metabolic diseases. J Diabetes Investig. 2021;12(1):21-31.
فهرسة مساهمة: Keywords: acute radiation syndrome; genistein; medical countermeasure; phase 1; radioprotectant
المشرفين على المادة: 0 (Biomarkers)
DH2M523P0H (Genistein)
0 (Radiation-Protective Agents)
تواريخ الأحداث: Date Created: 20221027 Date Completed: 20230203 Latest Revision: 20230227
رمز التحديث: 20230228
DOI: 10.1002/cpdd.1188
PMID: 36301689
قاعدة البيانات: MEDLINE
الوصف
تدمد:2160-7648
DOI:10.1002/cpdd.1188