دورية أكاديمية

Clinical and microbiological characteristics of Staphylococcus lugdunensis.

التفاصيل البيبلوغرافية
العنوان: Clinical and microbiological characteristics of Staphylococcus lugdunensis.
المؤلفون: Cronin KM; Department of Microbiology, Royal Melbourne Hospital, Melbourne, Australia., Moso MA, Chan E, Bond KA
المصدر: Current opinion in infectious diseases [Curr Opin Infect Dis] 2022 Dec 01; Vol. 35 (6), pp. 524-529. Date of Electronic Publication: 2022 Oct 27.
نوع المنشور: Review; Journal Article
اللغة: English
بيانات الدورية: Publisher: Lippincott Williams & Wilkins Country of Publication: United States NLM ID: 8809878 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1473-6527 (Electronic) Linking ISSN: 09517375 NLM ISO Abbreviation: Curr Opin Infect Dis Subsets: MEDLINE
أسماء مطبوعة: Publication: Hagerstown, Md. : Lippincott Williams & Wilkins
Original Publication: London, UK ; Philadelphia, PA : Gower Academic Journals, c1988-
مواضيع طبية MeSH: Staphylococcus lugdunensis* , Staphylococcal Infections*/drug therapy , Staphylococcal Infections*/microbiology, Humans ; Staphylococcus aureus ; Microbial Sensitivity Tests ; Bacterial Proteins ; Oxacillin ; Anti-Bacterial Agents/pharmacology ; Anti-Bacterial Agents/therapeutic use
مستخلص: Purpose of Review: This review provides an update on recent findings about the clinical and microbiological characteristics of Staphylococcus lugdunensis .
Recent Findings: European Committee on Antimicrobial Susceptibility Testing (EUCAST) and Clinical and Laboratory Standards Institute (CLSI) differ in their methodology and breakpoints for the detection of penicillin and oxacillin resistance in S. lugdunensis . The EUCAST method for beta-lactamase detection recommends a 1-unit penicillin disk and has demonstrated superior performance compared to the 10-unit penicillin disk recommended by CLSI. A similar outcome has been previously reported in Staphylococcus aureus. In addition, there is emerging oxacillin resistance in some geographical areas. Of particular concern is that oxacillin resistance in mecA positive isolates may not be reliably detected by current cefoxitin breakpoints.
Summary: Coagulase negative staphylococci are now recognised as a heterogenous group of organisms that do not microbiologically or clinically behave the same way. The spectrum of clinical disease is species dependent and is particularly true for S. lugdunensis , which causes an array of clinical infections like that of S. aureus. Further studies are needed to assess the performance of phenotypic tests to detect resistance, to ensure that appropriate antimicrobial therapy is delivered to patients.
(Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.)
References: Freney J, Brun Y, Bes M, et al. Staphylococcus lugdunensis sp. nov. and Staphylococcus schleiferi sp. nov., two species from human clinical specimens. Int J Syst Bacteriol 1988; 28:168–172.
Heilbronner S, Foster TJ. Staphylococcus lugdunensis : a skin commensal with invasive pathogenic potential. Clin Microbiol Rev 2021; 34:e00205–e220.
Anguera I, del Río A, Miró JM, et al. Staphylococcus lugdunensis infective endocarditis: description of 10 cases and analysis of native valve, prosthetic valve, and pacemaker lead endocarditis clinical profiles. Heart 2005; 91:e10.
Becker K, Skov RL, von Eiff C. 22 Staphylococcus, Micrococcus, and Other Catalase-Positive Cocci. In: Manual of Clinical Microbiology. 12th edition. Edited by Carroll KC, Pfaller MA, Landry ML, et al. (editors). Washington DC, USA: ASM Press; 2019. pp. 367-398.
Bailey W, Scott E. Diagnostic microbiology. St. Louis, MO: C. V. Mosby Company; 1962.
McAdow M, Missiakas DM, Schneewind O. Staphylococcus aureus secretes coagulase and von willebrand factor binding protein to modify the coagulation cascade and establish host infections. J Innate Immun 2012; 4:141–148.
van Griethuysen A, Bes M, Etienne J, et al. International multicenter evaluation of latex agglutination tests for identification of Staphylococcus aureus . J Clin Microbiol 2001; 39:86.
McAdam AJ. The end of coagulase-negative staphylococci? A micro-comic strip. J Clin Microbiol 2020; 58:e02080-19.
CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2022;ED 32.
Ho A. Carriage niches and molecular epidemiology of Staphylococcus lugdunensis and methicillin-resistant S lugdunensis among patients undergoing long-term renal replacement therapy. Diagn Microbial Infect Dis 2015; 81:141–144.
van der Mee-Marquet N, Achard A, Mereghetti L, et al. Staphylococcus lugdunensis infections: High frequency of inguinal area carriage. J Clin Microbiol 2003; 41:1404–1409.
Bieber L, Kahlmeter G. Staphylococcus lugdunensis in several niches of the normal skin flora. Clin Microbiol Infect 2010; 16:385–388.
Pfaller MA, Jones RN, Doern Gv, et al. Survey of blood stream infections attributable to gram-positive cocci: frequency of occurrence and antimicrobial susceptibility of isolates collected in 1997 in the United States, Canada, and Latin America from the SENTRY Antimicrobial Surveillance Program. SENTRY Participants Group. Diagn Microbiol Infect Dis 1999; 33:283–297.
Choi SH, Chung JW, Lee EJ, et al. Incidence, characteristics, and outcomes of Staphylococcus lugdunensis bacteremia. J Clin Microbiol 2010; 48:3346–3349.
Non LR, Santos CAQ. The occurrence of infective endocarditis with Staphylococcus lugdunensis bacteremia: a retrospective cohort study and systematic review. J Infect 2017; 74:179–186.
Ebright JR, Penugonda N, Brown W. Clinical experience with Staphylococcus lugdunensis bacteremia: a retrospective analysis. Diagn Microbiol Infect Dis 2004; 48:17–21.
Beekmann SE, Diekema DJ, Doern G. Determining the clinical significance of coagulase-negative staphylococci isolated from blood cultures. Infect Control Hosp Epidemiol 2005; 26:559–566.
Herwaldt LA, Geiss M, Kao C, et al. The positive predictive value of isolating coagulase-negative staphylococci from blood cultures. Clin Infect Dis 1996; 22:14–20.
Ainoda Y, Takeshita N, Hase R, et al. Multicenter study of the clinical presentation of Staphylococcus lugdunensis bacteremia in Japan. Jpn J Infect Dis 2017; 70:405–407.
Zinkernagel AS, Zinkernagel MS, Elzi M, et al. Significance of Staphylococcus lugdunensis bacteremia: report of 28 cases and review of the literature. Infection 2008; 36:314–321.
Lin JF, Cheng CW, Kuo AJ, et al. Clinical experience and microbiologic characteristics of invasive Staphylococcus lugdunensis infection in a tertiary center in northern Taiwan. J Microbiol Immunol Infect 2015; 48:406–412.
Turnidge JD, Kotsanas D, Munckhof W, et al. Staphylococcus aureus bacteraemia: a major cause of mortality in Australia and New Zealand. Med J Aust 2009; 191:368–373.
Shurland S, Zhan M, Bradham DD, et al. Comparison of mortality risk associated with bacteremia due to methicillin-resistant and methicillin-susceptible Staphylococcus aureus . Infect Control Hosp Epidemiol 2007; 28:273–279.
Tong SYC, Davis JS, Eichenberger E, et al. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 2015; 28:603–661.
Choi SH, Cho SY, Park JH, et al. Impact of infectious-disease specialist consultations on outcomes of Staphylococcus aureus bacteremia in a hospital with a low volume of patients with S. aureus bacteremia. J Infect 2011; 62:181–185.
Lahey T, Shah R, Gittzus J, et al. Infectious diseases consultation lowers mortality from Staphylococcus aureus bacteremia. Medicine 2009; 88:263–267.
Isobe M, Uejima E, Seki M, et al. Methicillin-resistant Staphylococcus aureus bacteremia at a university hospital in Japan. J Infect Chemother 2012; 18:841–847.
Pastagia M, Kleinman LC, de la Cruz EGL, et al. Predicting risk for death from MRSA bacteremia. Emerg Infect Dis 2012; 18:1072.
Forsblom E, Högnäs E, Syrjänen J, et al. Infectious diseases specialist consultation in Staphylococcus lugdunensis bacteremia. PLoS One 2021; 16:e0258511.
Hauser N, Kim JJ, Luethy PM, et al. Multicenter retrospective cohort study of the clinical significance of Staphylococcus lugdunensis isolated from a single blood culture set. Diagn Microbiol Infect Dis 2021; 99:115261.
Chang FY, MacDonald BB, Peacock JE, et al. A prospective multicenter study of Staphylococcus aureus bacteremia: Incidence of endocarditis, risk factors for mortality, and clinical impact of methicillin resistance. Medicine 2003; 82:322–332.
Liu PY, Huang YF, Tang CW, et al. Staphylococcus lugdunensis infective endocarditis: a literature review and analysis of risk factors. J Microbiol Immunol Infect 2010; 43:478–484.
Aldman MH, Rasmussen M, Olaison L, et al. Endocarditis due to Staphylococcus lugdunensis —a retrospective national registry-based study. Eur J Clin Microbiol Infect Dis 2021; 40:1103–1106.
Chu VH, Cabell CH, Abrutyn E, et al. Native valve endocarditis due to coagulase-negative staphylococci: report of 99 episodes from the International Collaboration on Endocarditis Merged Database. Clin Infect Dis 2004; 29:1527–1530.
Whitener C, Caputo G, Weitekamp M, et al. Endocarditis due to coagulase-negative staphylococci. Microbiologic, epidemiologic, and clinical considerations. Infect Dis Clin North Am 1993; 7:81–96.
Leis BT, Parekh DD, Macknak BF, et al. Staphylococcus lugdunensis endocarditis: lower mortality in the contemporary era? CJC Open 2022; 4:474–478.
Argemi X, Hansmann Y, Riegel P, et al. Is Staphylococcus lugdunensis significant in clinical samples? J Clin Microbiol 2017; 55:3167–3174.
Shah NB, Osmon DR, Fadel H, et al. Laboratory and clinical characteristics of Staphylococcus lugdunensis prosthetic joint infections. J Clin Microbiol 2010; 48:1600–1603.
Lourtet-Hascoët J, Bicart-See A, Félicé MP, et al. Staphylococcus lugdunensis , a serious pathogen in periprosthetic joint infections: comparison to Staphylococcus aureus and Staphylococcus epidermidis . Int J Infect Dis 2016; 51:56–61.
Li A, Gow N, Atkins BL, et al. Metalware-associated orthopaedic infections caused by Staphylococcus lugdunensis : an emerging pathogen. J Infect 2017; 75:368–379.
Hellbacher C, Törnqvist E, Söderquist B. Staphylococcus lugdunensis : clinical spectrum, antibiotic susceptibility, and phenotypic and genotypic patterns of 39 isolates. Clin Microbiol Infect 2006; 12:43–49.
Frank KL, Reichert EJ, Piper KE, et al. In vitro effects of antimicrobial agents on planktonic and biofilm forms of Staphylococcus lugdunensis clinical isolates. Antimicrob Agents Chemother 2007; 51:888–895.
Tee WSN, Yen Soh S, Lin R, et al. Staphylococcus lugdunensis carrying the mecA gene causes catheter-associated bloodstream infection in premature neonate. J Clin Microbiol 2003; 41:519–520.
Herchline TE, Leona WA. Occurrence of Staphylococcus lugdunensis in consecutive clinical cultures and relationship of isolation to infection. J Clin Microbiol 1991; 29:419–421.
McHardy IH, Veltman J, Hindler J, et al. Clinical and microbiological aspects of β-lactam resistance in Staphylococcus lugdunensis . J Clin Microbiol 2017; 55:585–595.
Teh JSK, Pantelis I, Chen X, et al. Antimicrobial susceptibility testing for Staphylococcus lugdunensis . J Clin Microbiol 2022; 60:e0320220.
The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 120. 2022.
Papanicolas LE, Bell JM, Bastian I. Performance of phenotypic tests for detection of penicillinase in Staphylococcus aureus isolates from Australia. J Clin Microbiol 2014; 52:1136–1138.
Ho PL, Liu MCJ, Tong MK, et al. Evaluation of disc diffusion tests and agar screening for predicting mecA-mediated oxacillin resistance in Staphylococcus lugdunensis revealed a cefoxitin-susceptible, mecA-positive S. lugdunensis clonal complex 27 clone. J Glob Antimicrob Resist 2020; 20:260–265.
Yeh CF, Chang SC, Cheng CW, et al. Clinical features, outcomes, and molecular characteristics of community-and healthcare-associated Staphylococcus lugdunensis infections. J Clin Microbiol 2016; 54:2051–2057.
Cheng C, Liu T, Yeh C, et al. Persistence of a major endemic clone of oxacillin-resistant Staphylococcus lugdunensis sequence type 6 at a tertiary medical centre in northern Taiwan. Int J Infect Dis 2015; 36:72–77.
Chang SC, Lin LC, Lu JJ. Comparative genomic analyses reveal potential factors responsible for the ST6 oxacillin-resistant Staphylococcus lugdunensis endemic in a hospital. Front Microbiol 2021; 12:765437.
Ho PL, Law YH, Liu MCJ, et al. Improved detection of mecA-mediated β-lactam resistance in Staphylococcus lugdunensis using a new oxacillin salt agar screen. Front Microbiol 2021. 12.
المشرفين على المادة: 0 (Bacterial Proteins)
UH95VD7V76 (Oxacillin)
0 (Anti-Bacterial Agents)
تواريخ الأحداث: Date Created: 20221028 Date Completed: 20221109 Latest Revision: 20230128
رمز التحديث: 20231215
DOI: 10.1097/QCO.0000000000000882
PMID: 36305373
قاعدة البيانات: MEDLINE