دورية أكاديمية

Branched-chain amino acids (BCAA) administration increases autophagy and the autophagic pathway in brain tissue of rats submitted to a Maple Syrup Urine Disease (MSUD) protocol.

التفاصيل البيبلوغرافية
العنوان: Branched-chain amino acids (BCAA) administration increases autophagy and the autophagic pathway in brain tissue of rats submitted to a Maple Syrup Urine Disease (MSUD) protocol.
المؤلفون: Fermo KT; Laboratório de Doenças Neurometabólicas, Programa de Pós-Graduação Em Ciências da Saúde, Universidade Do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brasil., da Silva Lemos I; Laboratório de Doenças Neurometabólicas, Programa de Pós-Graduação Em Ciências da Saúde, Universidade Do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brasil., Farias HR; Laboratório de Doenças Neurometabólicas, Programa de Pós-Graduação Em Ciências da Saúde, Universidade Do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brasil., Rosso MP; Laboratório de Doenças Neurometabólicas, Programa de Pós-Graduação Em Ciências da Saúde, Universidade Do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brasil., Effting PS; Laboratório de Doenças Neurometabólicas, Programa de Pós-Graduação Em Ciências da Saúde, Universidade Do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brasil., Leipnitz G; Departamento de Bioquímica, Universidade Federal Do Rio Grande Sul, Porto Alegre, RS, 90035-003, Brasil., Streck EL; Laboratório de Doenças Neurometabólicas, Programa de Pós-Graduação Em Ciências da Saúde, Universidade Do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brasil. emiliostreck@gmail.com.
المصدر: Metabolic brain disease [Metab Brain Dis] 2023 Jan; Vol. 38 (1), pp. 287-293. Date of Electronic Publication: 2022 Oct 28.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 8610370 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-7365 (Electronic) Linking ISSN: 08857490 NLM ISO Abbreviation: Metab Brain Dis Subsets: MEDLINE
أسماء مطبوعة: Publication: 2005- : Amsterdam : Springer
Original Publication: New York : Plenum, c1986-
مواضيع طبية MeSH: Maple Syrup Urine Disease*/metabolism, Rats ; Animals ; Amino Acids, Branched-Chain/metabolism ; Rats, Wistar ; Disease Models, Animal ; Brain/metabolism ; Keto Acids ; Autophagy
مستخلص: Maple Syrup Urine Disease (MSUD) is an inborn error of metabolism (EIM) biochemically characterized by the tissue accumulation of branched-chain amino acids (BCAA) and their branched-chain alpha-keto acids. The mechanisms by which BCAA and their branched-chain alpha-keto acids lead to the neurological damage observed in MSUD are poorly understood. Mounting evidence has demonstrated that BCAA induce the overproduction of reactive oxygen species, which may modulate several important signaling pathways necessary for cellular homeostasis maintenance, such as autophagy. Taking this into account, we evaluated the effects of BCAA on the autophagic pathway in brain structures of rats submitted to the administration of these amino acids (animal model of MSUD). Our findings showed that BCAA significantly increased the levels of Beclin-1, ATG7, and ATG5 in the cerebral cortex of rats. In addition, BCAA augmented ATG12 levels in the striatum and ATG5 and LC3 I-II in the hippocampus. Therefore, our work demonstrates that the administration of BCAA increases autophagy and autophagic cell death, possibly mediated by the elevated levels of reactive species generated by BCAA.
(© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Baehrecke EH (2003) Autophagic programmed cell death in Drosophila. Cell Death Differ 10:940–945. https://doi.org/10.1038/sj.cdd.4401280. (PMID: 10.1038/sj.cdd.4401280)
Bar-Yosef T, Damri O, Agam G (2019) Dual role of autophagy in diseases of the central nervous system. Front Cell Neurosci 13:196. https://doi.org/10.3389/fncel.2019.00196. (PMID: 10.3389/fncel.2019.00196)
Bridi R, Araldi J, Sgarbi MB et al (2003) Induction of oxidative stress in rat brain by the metabolites accumulating in maple syrup urine disease. Int J Dev Neurosci 21:327–332. https://doi.org/10.1016/S0736-5748(03)00074-1. (PMID: 10.1016/S0736-5748(03)00074-1)
Bridi R, Braun CA, Zorzi GK et al (2005a) α-keto acids accumulating in maple syrup urine disease stimulate lipid peroxidation and reduce antioxidant defences in cerebral cortex from young rats. Metab Brain Dis 20:155–167. https://doi.org/10.1007/s11011-005-4152-8. (PMID: 10.1007/s11011-005-4152-8)
Bridi R, Latini A, Braum CA et al (2005b) Evaluation of the mechanisms involved in leucine-induced oxidative damage in cerebral cortex of young rats. Free Radic Res 39:71–79. https://doi.org/10.1080/10715760400022350. (PMID: 10.1080/10715760400022350)
Bridi R, Fontella FU, Pulrolnik V et al (2006) A chemically-induced acute model of maple syrup urine disease in rats for neurochemical studies. J Neurosci Methods 155:224–230. https://doi.org/10.1016/J.JNEUMETH.2006.01.005. (PMID: 10.1016/J.JNEUMETH.2006.01.005)
Chuang DT, Shih VE, Wynn M (2001) Maple syrup urine disease (branched chain ketoaciduria). In: Scriver C, Beaudet A, Sly W, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 1971–2005.
Chuang DT, Chuang JL, Wynn RM (2006) Lessons from genetic disorders of branched-chain amino acid metabolism. J Nutr 136:243–249. https://doi.org/10.1093/jn/136.1.243s. (PMID: 10.1093/jn/136.1.243s)
Chuang D, Shih V, Wynn R (2020) Maple syrup urine disease (branched chain ketoaciduria). In: Valle D, Antonarakis S, Ballabio A, et al. (eds) The Online Metabolic and Molecular Bases of Inherited Disease. McGraw-Hill, New York.
Clarke PGH, Puyal J (2012) Autophagic cell death exists. Autophagy 8:867–869. https://doi.org/10.4161/auto.20380. (PMID: 10.4161/auto.20380)
Farias HR, Gabriel JR, Cecconi ML et al (2021) The metabolic effect of α-ketoisocaproic acid: in vivo and in vitro studies. Metab Brain Dis 36:185–192. https://doi.org/10.1007/S11011-020-00626-Y. (PMID: 10.1007/S11011-020-00626-Y)
Filippone A, Esposito E, Mannino D et al (2022) The contribution of altered neuronal autophagy to neurodegeneration. Pharmacol Ther 238. https://doi.org/10.1016/J.PHARMTHERA.2022.108178.
Filomeni G, De Zio D, Cecconi F (2015) Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ 22:377. https://doi.org/10.1038/CDD.2014.150. (PMID: 10.1038/CDD.2014.150)
Fontella FU, Gassen E, Pulrolnik V et al (2002) Stimulation of lipid peroxidation in vitro in rat brain by the metabolites accumulating in maple syrup urine disease. Metab Brain Dis 17:47–54. https://doi.org/10.1023/A:1014004414733. (PMID: 10.1023/A:1014004414733)
Frazier DM, Allgeier C, Homer C et al (2014) Nutrition management guideline for maple syrup urine disease: an evidence- and consensus-based approach. Mol Genet Metab 112:210–217. https://doi.org/10.1016/J.YMGME.2014.05.006. (PMID: 10.1016/J.YMGME.2014.05.006)
Funderburk SF, Wang QJ, Yue Z (2010) The Beclin 1-VPS34 complex - at the crossroads of autophagy and beyond. Trends Cell Biol 20:355–362. https://doi.org/10.1016/J.TCB.2010.03.002.
Gibson GE, Blass JP (1976) Inhibition of acetylcholine synthesis and of carbohydrate utilization by maple-syrup-urine disease metabolites. J Neurochem 26:1073–1078. https://doi.org/10.1111/J.1471-4159.1976.TB06988.X. (PMID: 10.1111/J.1471-4159.1976.TB06988.X)
Hayat M (2017) Overview of autophagy. In: Hayat M (ed) Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging, vol 12. Academic Press, pp 3–123. (PMID: 10.1016/B978-0-12-805420-8.00001-9)
He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93. https://doi.org/10.1146/ANNUREV-GENET-102808-114910. (PMID: 10.1146/ANNUREV-GENET-102808-114910)
Herber S, Schwartz IVD, Nalin T et al (2014) Maple syrup urine disease in Brazil: a panorama of the last two decades. J Pediatr (Rio J) 91:292–298. https://doi.org/10.1016/j.jpedp.2015.03.006. (PMID: 10.1016/j.jpedp.2015.03.006)
Itakura E, Mizushima N (2010) Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6:764–776. https://doi.org/10.4161/AUTO.6.6.12709. (PMID: 10.4161/AUTO.6.6.12709)
Kabeya Y, Mizushima N, Ueno T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720. https://doi.org/10.1093/EMBOJ/19.21.5720. (PMID: 10.1093/EMBOJ/19.21.5720)
Levine B, Kroemer G (2019) Biological Functions of Autophagy Genes: A Disease Perspective. Cell 176:11–42. https://doi.org/10.1016/J.CELL.2018.09.048. (PMID: 10.1016/J.CELL.2018.09.048)
Levonen AL, Hill BG, Kansanen E et al (2014) Redox regulation of antioxidants, autophagy, and the response to stress: implications for electrophile therapeutics. Free Radic Biol Med 71:196–207. https://doi.org/10.1016/J.FREERADBIOMED.2014.03.025. (PMID: 10.1016/J.FREERADBIOMED.2014.03.025)
Liang JH, Jia JP (2014) Dysfunctional autophagy in Alzheimer’s disease: Pathogenic roles and therapeutic implications. Neurosci Bull 30:308–316. https://doi.org/10.1007/s12264-013-1418-8. (PMID: 10.1007/s12264-013-1418-8)
Lowry OH, Rosebrogh NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1016/s0021-9258(19)52451-6. (PMID: 10.1016/s0021-9258(19)52451-6)
Luo F, Sandhu AF, Rungratanawanich W et al (2020) Melatonin and Autophagy in Aging-Related Neurodegenerative Diseases. Int J Mol Sci 21:1–31. https://doi.org/10.3390/IJMS21197174. (PMID: 10.3390/IJMS21197174)
Mizushima N, Kuma A, Kobayashi Y et al (2003) Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci 116:1679–1688. https://doi.org/10.1242/JCS.00381. (PMID: 10.1242/JCS.00381)
Murray R, Granner D, Mayes P, Rodwell V (2006) Harper: bioquímica, 27 a . Atheneu, São Paulo.
Nemoto T, Tanida I, Tanida-Miyake E et al (2003) The mouse APG10 homologue, an E2-like enzyme for Apg12p conjugation, facilitates MAP-LC3 modification. J Biol Chem 278:39517–39526. https://doi.org/10.1074/JBC.M300550200. (PMID: 10.1074/JBC.M300550200)
Scherz-Shouval R, Elazar Z (2007) ROS, mitochondria and the regulation of autophagy. Trends Cell Biol 17:422–427. https://doi.org/10.1016/J.TCB.2007.07.009. (PMID: 10.1016/J.TCB.2007.07.009)
Serra JD, Sánchez FA, Visus FSV (2010) Enfermidades de Orina de Jarabe Arce. In: Sanjurjo P, Baldellou A. Diagnóstico y Tratamiento de las Enfermidades Hereditárias. Madri: Edicciones Ergon, 3th ed.
Serra JD, Sánchez F, Visus FS-V, Miñana IV (2014) Enfermedad de orina de jarabe de arce. In: Sanjurgo P, Baldellou A, Couce ML, et al. (eds) Diagnóstico y tratamiento de las enfermedades metabólicas hereditárias, 4 a . Ergon, Majadahonda, pp 531–542.
Sperringer JE, Addington A, Hutson SM (2017) Branched-Chain Amino Acids and Brain Metabolism. Neurochem Res 42:1697–1709. https://doi.org/10.1007/S11064-017-2261-5. (PMID: 10.1007/S11064-017-2261-5)
Strauss KA, Morton DH (2003) Branched-chain Ketoacyl Dehydrogenase Deficiency: Maple Syrup Disease. Curr Treat Options Neurol 5:329–341. https://doi.org/10.1007/S11940-003-0039-3. (PMID: 10.1007/S11940-003-0039-3)
Strauss KA, Wardley B, Robinson D et al (2010) Classical maple syrup urine disease and brain development: principles of management and formula design. Mol Genet Metab 99:333–345. https://doi.org/10.1016/j.ymgme.2009.12.007. (PMID: 10.1016/j.ymgme.2009.12.007)
Strauss KA, Puffenberger EG, Carson VJ (2020) Maple Syrup Urine Disease - GeneReviews® - NCBI Bookshelf. In: Maple Syrup Urin. Dis. https://www.ncbi.nlm.nih.gov/books/NBK1319/ . Accessed 2 Aug 2022.
Wajner M, Vargas C (2002) Aminoacidopatias e Acidemias orgânicas. In: Fonseca L, Piaretti G, Xavier C (eds) Compêndio de Neurologia Infantil, 2 a . Medsi, Rio de Janeiro, p 984.
Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9:1102–1109. https://doi.org/10.1038/NCB1007-1102. (PMID: 10.1038/NCB1007-1102)
فهرسة مساهمة: Keywords: Autophagy; Branched-chain amino acids; Maple syrup urine disease; Oxidative stress
المشرفين على المادة: 0 (Amino Acids, Branched-Chain)
0 (Keto Acids)
تواريخ الأحداث: Date Created: 20221028 Date Completed: 20230113 Latest Revision: 20230202
رمز التحديث: 20230202
DOI: 10.1007/s11011-022-01109-y
PMID: 36305998
قاعدة البيانات: MEDLINE