دورية أكاديمية

Copolymerization of Carbonyl Sulfide and Propylene Oxide via a Heterogeneous Prussian Blue Analogue Catalyst with High Productivity and Selectivity.

التفاصيل البيبلوغرافية
العنوان: Copolymerization of Carbonyl Sulfide and Propylene Oxide via a Heterogeneous Prussian Blue Analogue Catalyst with High Productivity and Selectivity.
المؤلفون: Ullah Khan M; State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, P. R. China., Ullah Khan S; Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, 230027, Hefei, P. R. China., Cao X; State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, P. R. China., Usman M; Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, P. R. China., Yue X; State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, P. R. China., Ghaffar A; Advanced Materials Research Center, Zhejiang University-University of Illinois at Urbana-Champaign Institute (ZJU-UIUC), 718 East Haizhou Road, Haining, 314400, Zhejiang, P. R. China., Hassan M; Advanced Materials Research Center, Zhejiang University-University of Illinois at Urbana-Champaign Institute (ZJU-UIUC), 718 East Haizhou Road, Haining, 314400, Zhejiang, P. R. China., Zhang C; State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, P. R. China., Zhang X; State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, P. R. China.; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, 030013, Shanxi, P. R. China.
المصدر: Chemistry, an Asian journal [Chem Asian J] 2023 Jan 03; Vol. 18 (1), pp. e202201050. Date of Electronic Publication: 2022 Nov 24.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 101294643 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1861-471X (Electronic) Linking ISSN: 1861471X NLM ISO Abbreviation: Chem Asian J Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Weinheim, Germany : Wiley-VCH, c2006-
مواضيع طبية MeSH: Polymers* , Cobalt*, Catalysis
مستخلص: This study demonstrates the superiority of a stable and well-defined heterogeneous cobalt hexacyanocobaltate (Co 3 [Co(CN) 6 ] 2 ), a typical cobalt Prussian Blue Analogue (CoCo-PBA) that catalyzes the copolymerization of carbonyl sulfide (COS) and propylene oxide (PO) to produce poly(propylene monothiocarbonate)s (PPMTC). The number-average molecular weights of the PPMTC were 66.4 to 139.4 kg/mol, with a polydispersity of 2.0-3.9. The catalyst productivity reached 1040 g polymer/g catalyst (12.0 h). The oxygen-sulfur exchange reaction (O/S ER), which would generate random thiocarbonate and carbonate units, was effectively suppressed, and thus the selectivity of the monothiocarbonate over carbonate linkages was up to >99%. It was shown that no cyclic thiocarbonate byproduct was produced during the heterogeneous catalysis of COS/PO copolymerization using CoCo-PBA as the catalyst. The content of monothiocarbonate and ether units in the copolymer chain could be regulated by tuning the feeding amount of COS.
(© 2022 Wiley-VCH GmbH.)
References: R. A. Rasmussen, M. A. K. Khalil, R. W. Dalluge, S. A. Penkett, B. Jones, Science 1982, 215, 665-667.
R. A. Cox, D. Sheppard, Nature 1980, 284, 330-331.
H. L. Wu, J. L. Yang, M. Luo, R. Y. Wang, J. T. Xu, B. Y. Du, X. H. Zhang, D. J. Darensbourg, Macromolecules 2016, 49, 8863-8868.
M. Luo, X. H. Zhang, B. Y. Du, Q. Wang, Z. Q. Fan, Polym. Chem. 2015, 6, 4978-4983.
T. J. Yue, W. M. Ren, Y. Liu, Z. Q. Wan, X. B. Lu, Macromolecules 2016, 49, 2971-2976.
M. Luo, X. H. Zhang, D. J. Darensbourg, Polym. Chem. 2015, 6, 6955-6958.
C. J. Zhang, H. L. Wu, Y. Li, J. L. Yang, X. H. Zhang, Nat. Commun. 2018, 9, DOI 10.1038/s41467-018-04554-5.
J. L. Yang, H. L. Wu, Y. Li, X. H. Zhang, D. J. Darensbourg, Angew. Chem. Int. Ed. 2017, 56, 5774-5779;.
Angew. Chem. 2017, 129, 5868-5873.
W. M. Ren, T. J. Yue, M. R. Li, Z. Q. Wan, X. B. Lu, Macromolecules 2017, 50, 63-68.
T. J. Yue, W. M. Ren, L. Chen, G. G. Gu, Y. Liu, X. B. Lu, Angew. Chem. Int. Ed. 2018, 57, 12670-12674;.
Angew. Chem. 2018, 130, 12852-12856.
T. J. Yue, G. A. Bhat, W. J. Zhang, W. M. Ren, X. B. Lu, D. J. Darensbourg, Angew. Chem. Int. Ed. 2020, 59, 13633-13637;.
Angew. Chem. 2020, 132, 13735-13739.
M. Luo, X. H. Zhang, B. Y. Du, Q. Wang, Z. Q. Fan, Macromolecules 2013, 46, 5899-5904.
W. M. Ren, Y. Liu, A. X. Xin, S. Fu, X. B. Lu, Macromolecules 2015, 48, 8445-8450.
Y. Shen, W. Xiong, Y. Li, Z. Zhao, H. Lu, Z. Li, CCS 2021, 3, 620-630.
Y. Wang, C. J. Zhang, Z. W. Wang, X. H. Zhang, Acta Polym. 2021, 52, 499-504.
X. Zhang, Y. Sun, C. Zhang, X. Zhang, CCS 2022, 1-9, DOI: 10.31635/ccschem.022.202202072.
M. Luo, X. H. Zhang, D. J. Darensbourg, Acc. Chem. Res. 2016, 49, 2209-2219.
B. Ochiai, K. Yoshii, D. Nagai, T. Endo, J. Polym. Sci. Part A 2005, 43, 1014-1018.
K. Nakano, G. Tatsumi, K. Nozaki, J. Am. Chem. Soc. 2007, 129, 15116-15117.
X. H. Zhang, F. Liu, X. K. Sun, S. Chen, B. Y. Du, G. R. Qi, K. M. Wan, Macromolecules 2008, 41, 1587-1590.
M. Luo, X. H. Zhang, D. J. Darensbourg, Macromolecules 2015, 48, 5526-5532.
X. Cao, H. Wang, J. Yang, R. Wang, X. Hong, X. Zhang, J. Xu, H. Wang, Chin. Chem. Lett. 2022, 33, 1021-1024.
M. R. Kember, A. Buchard, C. K. Williams, Chem. Commun. 2011, 47, 141-163.
S. Klaus, M. W. Lehenmeier, C. E. Anderson, B. Rieger, Coord. Chem. Rev. 2011, 255, 1460-1479.
G. W. Coates, D. R. Moore, Angew. Chem. Int. Ed. 2004, 43, 6618-6639;.
Angew. Chem. 2004, 116, 6784-6806.
X. B. Lu, W. M. Ren, G. P. Wu, Acc. Chem. Res. 2012, 45, 1721-1735.
D. J. Darensbourg, S. J. Wilson, Green Chem. 2012, 14, 2665-2671.
B. Song, T. Bai, D. Liu, R. Hu, D. Lu, A. Qin, J. Ling, B. Z. Tang, CCS 2022, 4, 237-249.
Q. Wen, Q. Cai, P. Fu, D. Chang, X. Xu, T.-J. Wen, G.-P. Wu, W. Zhu, L.-S. Wan, C. Zhang, X.-H. Zhang, Q. Jin, Z.-L. Wu, C. Gao, H. Zhang, N. Huang, C.-Z. Li, H. Li, Chin. Chem. Lett. 2022, DOI: 10.1016/j.cclet.2022.06.015.
D. J. Darensbourg, J. R. Andreatta, M. J. Jungman, J. H. Reibenspies, Dalton Trans. 2009, 8891-8899.
X. Zhang, Y. Huang, F. Liu, X. Sun, Z. Fan, G. Qi, Acta Polym. 2009, 546-552, DOI:10.3724/SP.J.1105.2009.00546.
M. Luo, X. H. Zhang, D. J. Darensbourg, Macromolecules 2015, 48, 6057-6062.
A. Simonov, T. De Baerdemaeker, H. L. B. Boström, M. L. Ríos Gómez, H. J. Gray, D. Chernyshov, A. Bosak, H. B. Bürgi, A. L. Goodwin, Nature 2020, 578, 256-260.
S. Margadonna, K. Prassides, A. N. Fitch, Angew. Chem. Int. Ed. 2004, 43, 6316-6319;.
Angew. Chem. 2004, 116, 6476-6479.
L. Hu, P. Zhang, Q. W. Chen, J. Y. Mei, N. Yan, RSC Adv. 2011, 1, 1574-1578.
S. S. Kaye, J. R. Long, J. Am. Chem. Soc. 2005, 127, 6506-6507.
H. Yi, R. Qin, S. Ding, Y. Wang, S. Li, Q. Zhao, F. Pan, Adv. Funct. Mater. 2021, 31, 2006970.
L. Deng, Z. Yang, L. Tan, L. Zeng, Y. Zhu, L. Guo, Adv. Mater. 2018, 30, 1802510.
P. Y. Tang, L. J. Han, F. S. Hegner, P. Paciok, M. Biset-Peiró, H. C. Du, X. K. Wei, L. Jin, H. B. Xie, Q. Shi, T. Andreu, M. Lira-Cantú, M. Heggen, R. E. Dunin-Borkowski, N. López, J. R. Galán-Mascarós, J. R. Morante, J. Arbiol, Adv. Energy Mater. 2019, 9, 1901836.
L. Yan, Y. Liu, K. Zha, H. Li, L. Shi, D. Zhang, ACS Appl. Mater. Interfaces 2017, 9, 2581-2593.
M. U. Khan, S. U. Khan, J. Kiriratnikom, S. Zareen, X. H. Zhang, Polyhedron 2022, 214, DOI 10.1016/j.poly.2021.115640.
R. J. Wei, X. H. Zhang, B. Y. Du, Z. Q. Fan, G. R. Qi, J. Mol. Catal. A 2013, 379, 38-45.
X. H. Zhang, S. Chen, X. M. Wu, X. K. Sun, F. Liu, G. R. Qi, Chin. Chem. Lett. 2007, 18, 887-890.
M. U. Khan, S. U. Khan, J. Kiriratnikom, S. Zareen, X. Zhang, Chin. Chem. Lett. 2022, 33, 1081-1086.
D. H. M. Buchold, C. Feldmann, Chem. Mater. 2007, 19, 3376-3380.
D. F. Shriver, D. B. Brown, Inorg. Chem. 1969, 8, 42-46.
M. Luo, X. H. Zhang, B. Y. Du, Q. Wang, Z. Q. Fan, Polymer 2014, 55, 3688-3695.
معلومات مُعتمدة: 51973190 National Science Foundation of China; 2020R52006 Zhejiang Provincial Department of Science and Technology; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering
فهرسة مساهمة: Keywords: Carbonyl sulfide; Co3[Co(CN)6]2; Copolymerization; Heterogeneous catalysis; Poly(propylene monothiocarbonate)s
المشرفين على المادة: Y4Y7NYD4BK (propylene oxide)
TLE294X33A (ferric ferrocyanide)
871UI0ET21 (carbonyl sulfide)
0 (Polymers)
3G0H8C9362 (Cobalt)
تواريخ الأحداث: Date Created: 20221107 Date Completed: 20230105 Latest Revision: 20230111
رمز التحديث: 20240829
DOI: 10.1002/asia.202201050
PMID: 36342176
قاعدة البيانات: MEDLINE
الوصف
تدمد:1861-471X
DOI:10.1002/asia.202201050