دورية أكاديمية

Avirulent phenotype promotes Bordetella pertussis adaptation to the intramacrophage environment.

التفاصيل البيبلوغرافية
العنوان: Avirulent phenotype promotes Bordetella pertussis adaptation to the intramacrophage environment.
المؤلفون: Farman MR; Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria., Petráčková D; Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Institute of Microbiology, Prague, Czech Republic., Kumar D; Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Institute of Microbiology, Prague, Czech Republic., Držmíšek J; Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Institute of Microbiology, Prague, Czech Republic., Saha A; Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Institute of Microbiology, Prague, Czech Republic., Čurnová I; Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Institute of Microbiology, Prague, Czech Republic., Čapek J; Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Institute of Microbiology, Prague, Czech Republic., Hejnarová V; Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Institute of Microbiology, Prague, Czech Republic., Amman F; Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria., Hofacker I; Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria., Večerek B; Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Institute of Microbiology, Prague, Czech Republic.
المصدر: Emerging microbes & infections [Emerg Microbes Infect] 2023 Dec; Vol. 12 (1), pp. e2146536.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Taylor & Francis Country of Publication: United States NLM ID: 101594885 Publication Model: Print Cited Medium: Internet ISSN: 2222-1751 (Electronic) Linking ISSN: 22221751 NLM ISO Abbreviation: Emerg Microbes Infect Subsets: MEDLINE
أسماء مطبوعة: Publication: 2019- : [Philadelphia, PA] : Taylor & Francis
Original Publication: New York : NPG, 2012-2018.
مواضيع طبية MeSH: Bordetella pertussis*/metabolism , Whooping Cough*, Humans ; Bacterial Proteins/genetics ; Bacterial Proteins/metabolism ; Phenotype ; Macrophages/metabolism ; Gene Expression Regulation, Bacterial
مستخلص: Bordetella pertussis , the causative agent of whooping cough, is an extracellular, strictly human pathogen. However, it has been shown that B. pertussis cells can escape phagocytic killing and survive in macrophages upon internalization. Our time-resolved RNA-seq data suggest that B. pertussis efficiently adapts to the intramacrophage environment and responds to host bactericidal activities. We show that this adaptive response is multifaceted and, surprisingly, related to the BvgAS two-component system, a master regulator of virulence. Our results show that the expression of this regulatory circuit is downregulated upon internalization. Moreover, we demonstrate that the switch to the avirulent Bvg - phase augments a very complex process based on the adjustment of central and energy metabolism, cell wall reinforcement, maintenance of appropriate redox and metal homeostasis, and repair of damaged macromolecules. Nevertheless, not all observed effects could be simply attributed to the transition to Bvg - phase, suggesting that additional regulators are involved in the adaptation to the intramacrophage environment. Interestingly, a large number of genes required for the metabolism of sulphur were strongly modulated within macrophages. In particular, the mutant lacking two genes encoding cysteine dioxygenases displayed strongly attenuated cytotoxicity toward THP-1 cells. Collectively, our results suggest that intracellular B. pertussis cells have adopted the Bvg - mode to acclimate to the intramacrophage environment and respond to antimicrobial activities elicited by THP-1 cells. Therefore, we hypothesize that the avirulent phase represents an authentic phenotype of internalized B. pertussis cells.
References: Lancet. 2010 Jun 5;375(9730):1969-87. (PMID: 20466419)
Microb Cell. 2017 Mar 27;4(4):112-126. (PMID: 28435838)
J Bacteriol. 2003 Mar;185(6):1942-50. (PMID: 12618458)
J Bacteriol. 2017 Sep 19;199(20):. (PMID: 28760851)
FEMS Microbiol Lett. 1993 Jun 1;110(1):33-6. (PMID: 8319892)
J Exp Med. 2003 Sep 1;198(5):693-704. (PMID: 12953091)
Nat Genet. 2003 Sep;35(1):32-40. (PMID: 12910271)
Eukaryot Cell. 2013 Apr;12(4):604-13. (PMID: 23417561)
Sci Rep. 2016 Sep 13;6:32774. (PMID: 27620673)
J Immunol. 2001 Dec 1;167(11):6545-51. (PMID: 11714823)
Infect Immun. 1998 Sep;66(9):4367-73. (PMID: 9712789)
Pathog Dis. 2016 Aug;74(6):. (PMID: 27465637)
J Bacteriol. 2006 Aug;188(15):5561-9. (PMID: 16855246)
J Gen Microbiol. 1970 Oct;63(2):211-20. (PMID: 4324651)
Cell. 1998 Oct 16;95(2):189-98. (PMID: 9790526)
PLoS One. 2014 Aug 19;9(8):e104548. (PMID: 25137043)
Virulence. 2021 Dec;12(1):2608-2632. (PMID: 34590541)
J Biol Chem. 2017 May 12;292(19):8048-8058. (PMID: 28348085)
Infect Immun. 2010 Mar;78(3):907-13. (PMID: 20065021)
Infect Immun. 2000 Feb;68(2):956-9. (PMID: 10639471)
Front Microbiol. 2019 Dec 11;10:2839. (PMID: 31921025)
Curr Opin Infect Dis. 2021 Jun 1;34(3):197-205. (PMID: 33899754)
Trends Microbiol. 2007 Jun;15(6):252-6. (PMID: 17416526)
Genome Biol. 2014;15(12):550. (PMID: 25516281)
J Infect Dis. 2018 May 25;217(12):1987-1996. (PMID: 29528444)
Mol Microbiol. 2008 Oct;70(1):3-14. (PMID: 18554331)
Infect Immun. 1998 Jun;66(6):2762-8. (PMID: 9596745)
Mol Microbiol. 2018 Jan;107(2):198-213. (PMID: 29134701)
J Bacteriol. 2003 Feb;185(4):1470-4. (PMID: 12562821)
Microbiol Spectr. 2021 Oct 31;9(2):e0004421. (PMID: 34550019)
Nat Struct Biol. 1998 Apr;5(4):294-303. (PMID: 9546221)
Antimicrob Agents Chemother. 2014 Aug;58(8):4931-4. (PMID: 24867963)
FEMS Immunol Med Microbiol. 1999 Dec;26(3-4):203-7. (PMID: 10575131)
Mucosal Immunol. 2012 Sep;5(5):485-500. (PMID: 22718262)
Immunogenetics. 2007 Jul;59(7):555-64. (PMID: 17487483)
Int Immunopharmacol. 2014 Nov;23(1):37-45. (PMID: 25130606)
mBio. 2021 Oct 26;12(5):e0190221. (PMID: 34700381)
Clin Microbiol Rev. 2005 Apr;18(2):326-82. (PMID: 15831828)
mSystems. 2020 Dec 8;5(6):. (PMID: 33293402)
RNA Biol. 2020 May;17(5):731-742. (PMID: 32070192)
mSphere. 2019 Apr 17;4(2):. (PMID: 30996109)
PLoS Pathog. 2021 Aug 18;17(8):e1009819. (PMID: 34407151)
J Exp Med. 1994 Oct 1;180(4):1225-33. (PMID: 7931059)
Front Microbiol. 2020 Oct 15;11:557819. (PMID: 33178148)
FEMS Microbiol Rev. 2011 May;35(3):441-74. (PMID: 21204863)
Infect Immun. 2013 Nov;81(11):4081-90. (PMID: 23980112)
PLoS Biol. 2017 Apr 12;15(4):e2000420. (PMID: 28403138)
J Mol Biol. 2006 Mar 3;356(4):1014-26. (PMID: 16403514)
J Bacteriol. 1997 Dec;179(24):7724-33. (PMID: 9401031)
Bioinformatics. 2010 Jan 1;26(1):139-40. (PMID: 19910308)
RNA Biol. 2018;15(7):967-975. (PMID: 29683387)
Curr Opin Chem Biol. 2010 Apr;14(2):218-24. (PMID: 20015678)
PLoS One. 2018 Aug 30;13(8):e0203204. (PMID: 30161230)
Infect Immun. 2014 Dec;82(12):5175-84. (PMID: 25267839)
Microb Pathog. 2003 Jul;35(1):19-29. (PMID: 12860455)
Trends Microbiol. 2003 Aug;11(8):367-73. (PMID: 12915094)
Bioinformatics. 2005 Sep 15;21(18):3674-6. (PMID: 16081474)
mBio. 2017 Oct 10;8(5):. (PMID: 29018122)
J Exp Med. 1991 May 1;173(5):1143-9. (PMID: 2022924)
Nucleic Acids Res. 2001 May 1;29(9):e45. (PMID: 11328886)
J Nutr. 2006 Jun;136(6 Suppl):1652S-1659S. (PMID: 16702335)
Infect Immun. 1999 Apr;67(4):1974-81. (PMID: 10085045)
Cell. 2013 Jul 3;154(1):146-56. (PMID: 23827679)
J Bacteriol. 2013 Nov;195(22):5102-11. (PMID: 24013634)
Nature. 2000 Aug 17;406(6797):735-8. (PMID: 10963599)
Infect Immun. 2010 Jul;78(7):2901-9. (PMID: 20421378)
Infect Immun. 1992 Nov;60(11):4578-85. (PMID: 1398970)
Pathog Dis. 2013 Dec;69(3):194-204. (PMID: 23893966)
J Immunol. 1993 Dec 1;151(11):6274-82. (PMID: 8245466)
RNA Biol. 2015;12(2):175-85. (PMID: 25674816)
J Mol Biol. 2005 Aug 26;351(4):799-809. (PMID: 16045930)
J Proteomics. 2016 Mar 16;136:55-67. (PMID: 26873878)
Pathog Dis. 2015 Nov;73(8):ftv068. (PMID: 26374235)
Genetika. 2016 Apr;52(4):422-30. (PMID: 27529975)
Nat Methods. 2017 Apr;14(4):417-419. (PMID: 28263959)
Toxins (Basel). 2017 Sep 24;9(10):. (PMID: 28946636)
Nat Biotechnol. 2014 Sep;32(9):896-902. (PMID: 25150836)
Clin Infect Dis. 2008 Aug 1;47(3):328-38. (PMID: 18558873)
mBio. 2016 Aug 09;7(4):. (PMID: 27507830)
J Bacteriol. 2016 Dec 13;199(1):. (PMID: 27795327)
Biochim Biophys Acta. 2011 Apr;1807(4):444-50. (PMID: 21295539)
Infect Immun. 2004 Jan;72(1):408-13. (PMID: 14688122)
فهرسة مساهمة: Keywords: Bordetella pertussis; BvgAS; adaptation to stress; avirulent phase; cysteine toxicity; intramacrophage environment
المشرفين على المادة: 0 (Bacterial Proteins)
تواريخ الأحداث: Date Created: 20221110 Date Completed: 20230123 Latest Revision: 20230124
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC9858536
DOI: 10.1080/22221751.2022.2146536
PMID: 36357372
قاعدة البيانات: MEDLINE
الوصف
تدمد:2222-1751
DOI:10.1080/22221751.2022.2146536