دورية أكاديمية

Coconut fruit pulp by-product in the diet of sheep.

التفاصيل البيبلوغرافية
العنوان: Coconut fruit pulp by-product in the diet of sheep.
المؤلفون: da Silva FJS; Department of Animal Science, Federal University of Paraiba, Areia, PB, 58397-000, Brazil., de Lima Júnior DM; Federal Rural University of the Semi-Arid, Mossoro, RN, 59625-900, Brazil. juniorzootec@yahoo.com.br., de Almeida VVS; Federal University of Alagoas, Arapiraca, AL, 57308-700, Brazil., Oliveira AC; Federal University of Alagoas, Arapiraca, AL, 57308-700, Brazil., Fernandes BDO; Department of Animal Science, Federal University of Paraiba, Areia, PB, 58397-000, Brazil., Souza AP; Institute of Studies of the Humid Tropic, Federal University of the South and Southeast of Para, Xinguara, PA, Brazil., de Carvalho FFR; Department of Animal Science, Federal Rural University of Pernambuco, Recife, PE, 52171-900, Brazil., de Medeiros AN; Department of Animal Science, Federal University of Paraiba, Areia, PB, 58397-000, Brazil.
المصدر: Tropical animal health and production [Trop Anim Health Prod] 2022 Nov 12; Vol. 54 (6), pp. 379. Date of Electronic Publication: 2022 Nov 12.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 1277355 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-7438 (Electronic) Linking ISSN: 00494747 NLM ISO Abbreviation: Trop Anim Health Prod Subsets: MEDLINE
أسماء مطبوعة: Publication: 2005- : Heidelberg : Springer
Original Publication: Edinburgh, Livingstone.
مواضيع طبية MeSH: Rumen*/metabolism , Saccharum*, Sheep ; Animals ; Male ; Cellulose/metabolism ; Cocos/metabolism ; Digestion ; Fruit ; Propionates/metabolism ; Fermentation ; Diet/veterinary ; Dietary Fiber/metabolism ; Nitrogen/metabolism ; Animal Feed/analysis
مستخلص: This study aimed to evaluate the effect of the inclusion of coconut fruit pulp by-product (CPB) on the intake, apparent digestibility, nitrogen balance, and ruminal parameters of sheep. Five intact, male, non-descript lambs with a mean initial body weight of 25.5 ± 1.68 kg were assigned to a Latin square design (5 × 5) of five treatments consisting of CPB inclusion levels, in five proportions of 0%, 5%, 10%, 15%, and 20% dry matter (DM), in diets consisting of sugarcane bagasse as forage, with corn and soybean meal. Each period lasted 15 days for adaptation followed by 6 days for data collection. The inclusion of CPB linearly decreased (P < 0.05) the intake of DM, crude protein, non-fibre carbohydrates, neutral detergent fibre (NDF), and DM digestibility. The inclusion of CPB linearly increased (P < 0.05) the ether extract digestibility, but did not influence (P > 0.05) the NDF digestibility. There was a linear reduction (P < 0.05) in the absorbed nitrogen (N) and retained N (g/day); however, a quadratic increase (P < 0.05) for N absorbed (% consumed) as well as ammonia nitrogen was observed. There was a quadratic increase (P < 0.05) for propionate (mMol/L and %) and the ratio of acetate, propionate and butyrate (mMol/L and %) with the inclusion of CPB in the diet. Based on these findings, it was recommended to incorporate CPB up to the level of 5% in the diet of sheep.
(© 2022. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Allen, M.S. 2020. Control of feed intake by hepatic oxidation in ruminant animals: integration of homeostasis and homeorhesis. Animal, 14, 55--64. https://doi.org/10.1017/S1751731119003215. (PMID: 10.1017/S1751731119003215)
Alves, S.P., Santos-Silva, J., Cabrita, A.R.J., Fonseca, A.J.M., and Bessa, R.J.B., 2013. Detailed dimethylacetal and fatty acid composition of rumen content from lambs fed lucerne or concentrate supplemented with soybean oil. Plos One, 8, e58386.  https://doi.org/10.1371/journal.pone.0058386 . (PMID: 10.1371/journal.pone.0058386)
AOAC, Association of official analytical chemists, 2019. Official Methods of Analysis, 21st ed, AOAC, Gaithersburg, MD.
Appaiah, P., Sunil, L., Prasanth Kumar, P.K., and Gopala Krishna, A.G., 2014. Composition of coconut testa, coconut kernel and its oil. Journal of the American Oil Chemists’ Society, 91, 917--924. https://doi.org/10.1007/s11746-014-2447-9. (PMID: 10.1007/s11746-014-2447-9)
Bagaldo, A.R., Miranda, G.S., Soares Júnior, M.S.F., de Araújo, F.L., Matoso, R.V.M., Chizzotti, M.L., Bezerra, L.R., Oliveira, R.L., 2019. Effect of Licuri cake supplementation on performance, digestibility, ingestive behavior, carcass traits and meat quality of grazing lambs. Small Ruminant Research. 177, 18–24. https://doi.org/10.1016/j.smallrumres.2019.05.020. (PMID: 10.1016/j.smallrumres.2019.05.020)
Beauchemin, K.A. 2018. Current perspectives on eating and rumination activity in dairy cows. Journal of Dairy Science, 6, 4762-4784. https://doi.org/10.3168/jds.2017-13706. (PMID: 10.3168/jds.2017-13706)
Braga, Z.A.C., Braga, A.P., Rangel, A.H.N., Aguiar, E.M., and Lima Júnior, D.M., 2009. Evaluation of apparent consumption and digestibility of diets with different levels of meal coco. Revista Caatinga, 22, 249--256.
Castro, I.R.R., Maciel, D.L., Vargas, J.A.C., Gomes, D.I., Maciel, R.P., Mezzomo, R., Gama, M.A.S., Oliveira, L.R.S., Galvão, L.T.O., Pereira, K.S., and Alves, K.S. 2021. Nutrient utilization, performance, and milk fatty acid composition of grazing cows fed supplements with babassu coconut. Tropical Animal Health and Production, 53, 433. https://doi.org/10.1007/s11250-021-02869-y . (PMID: 10.1007/s11250-021-02869-y)
Cieślak, A., Szumacher-Strabel, M., Szymankiewicz, E., Piękniewski, M., Oleszak, P., Siwiński, Ł., and Potkański, A. .2006. Coconut oil reduces protozoa count and methane release during fermentation in a Rusitec system. Journal of Animal and Feed Science, 15, 19--22. https://doi.org/10.22358/jafs/70133/2006. (PMID: 10.22358/jafs/70133/2006)
Dayrit, F.M., 2014. The properties of lauric acid and their significance in coconut oil. Journal of the American Oil Chemists’ Society, 92, 1–15. https://doi.org/10.1007/s11746-014-2562-7. (PMID: 10.1007/s11746-014-2562-7)
Faciola, A.P., and Broderick, G.A., 2014. Effects of feeding lauric acid or coconut oil on ruminal protozoa numbers, fermentation pattern, digestion, omasal nutrient flow, and milk production in dairy cows. Journal of Dairy Science, 97, 5088--5100. https://doi.org/10.3168/JDS.2013-7653. (PMID: 10.3168/JDS.2013-7653)
Freitas, W.R., Ferreira, M.A., Silva, J.L., Véras, A.S.C., Barros, L.J.S., Alves, A.M.S.V., Chagas, J.C.C., Siqueira, T.D.C., and Almeida, G.A.P. 2018. Sugarcane bagasse as only roughage for crossbred lactating cows in semiarid regions. Pesquisa Agropecuária Brasileira, 53, 386--393. https://doi.org/10.1590/S0100-204X2018000300014 . (PMID: 10.1590/S0100-204X2018000300014)
Guilloteau, P., Meuth-Metzinger, L., Morisset, V., Zabielsk, J.R., 2006. Gastrin, cholecystokinin and gastrointestinal tract functions in mammals. Nutrition Research Reviews,19, 254–283. https://doi.org/10.1017/S0954422407334082. (PMID: 10.1017/S0954422407334082)
Hall, M.B. 2003. Challenges with nonfiber carbohydrate methods. Journal of Animal Science, 81, 3226–3232. https://doi.org/10.2527/2003.81123226x. (PMID: 10.2527/2003.81123226x)
Hall, M.B., and Eastridge, M.L., 2014. Carbohydrate and fat: Considerations for energy and more. The Professional Animal Scientist, 30, 140–149. https://doi.org/10.15232/S1080-7446(15)30101-7.
Halmemies-Beauchet-Filleau, A, Rinne, M, Lamminem, M,Mapato, M, Amparon, P, Wanapat, M, Vanhatalo, A, 2018. Review: Alternative and novel feeds for ruminants: nutritive value, product quality and environmental aspects. Animal, 12, 295--309. https://doi.org/10.1017/S1751731118002252. (PMID: 10.1017/S1751731118002252)
Hristov, A.N., Lee, C., Cassidy, T., Long, M., Heyler, K., Corl, B., and Forster, R., 2011. Effects of lauric and myristic acids on ruminal fermentation, production, and milk fatty acid composition in lactating dairy cows. Journal of Dairy Science, 94, 382--395. https://doi.org/10.3168/jds.2010-3508. (PMID: 10.3168/jds.2010-3508)
Jenkins, T.C., 1993. Lipid Metabolism in the Rumen. Journal of Dairy Science, 76, 3851--3863. https://doi.org/10.3168/jds.S0022-0302(93)77727-9. (PMID: 10.3168/jds.S0022-0302(93)77727-9)
Joele, M.R.S.P., Lourenço Júnior, J.B., Lourenço, L.F.H., Amaral Ribeiro, S.C., Meller, L.H., 2014. Buffalo meat from animals fed with agro industrial in Eastern Amazon. Archivos de Zootecnia. 63, 359--369. https://doi.org/10.4321/s0004-05922014000200014. (PMID: 10.4321/s0004-05922014000200014)
Kim, E.T., Park, C.G., Lim, D.H., Kwon, E.G., Ki, K.S., Kim, S.B., Moon, Y.H., Shin, N.H., and Lee, S.S. 2014. Effects of Coconut Materials on In vitro Ruminal Methanogenesis and Fermentation Characteristics. Asian-Australasian Journal of Animal Science, 27, 1721--1725. https://doi.org/10.5713/ajas.2014.14216. (PMID: 10.5713/ajas.2014.14216)
Klop, G., Dijkstra, J., Dieho, K., Hendriks, W.H., and Bannink, A., 2017. Enteric methane production in lactating dairy cows with continuous feeding of essential oils or rotational feeding of essential oils and lauric acid. Journal of Dairy Science, 100, 3563--3575. https://doi.org/10.3168/jds.2016-12033. (PMID: 10.3168/jds.2016-12033)
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F., 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259--263. https://doi.org/10.1127/0941-2948/2006/0130. (PMID: 10.1127/0941-2948/2006/0130)
Kozloski, G.V., Fiorentini, G., Härter, C.J., and Sanchez, L.M.B., 2005. Uso da creatinina como indicador da excreção urinária em cordeiros. Ciência Rural, 35, 98--102. https://doi.org/10.1590/s0103-84782005000100015. (PMID: 10.1590/s0103-84782005000100015)
Licitra, G., Hernandez, T. M., and Van Soest, P. J., 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology, 57, 347--358. https://doi.org/10.1016/0377-8401(95)00837-3. (PMID: 10.1016/0377-8401(95)00837-3)
Loften, J.R., Linn, J.G., Drackley, J.K., Jenkins, T.C., Soderholm, C.G., and Kertz, A.F. 2014. Invited review: palmitic and stearic acid metabolism in lactating dairy cows. Journal of Dairy Science, 97, 4661--74. https://doi.org/10.3168/jds.2014-7919 . (PMID: 10.3168/jds.2014-7919)
Machmüller, A., and Kreuzer, M., 1999. Methane suppression by coconut oil and associated effects on nutrient and energy balance in sheep, Journal of Animal Science, 79, 65--72. https://doi.org/10.4141/A98-079. (PMID: 10.4141/A98-079)
Maekawa, M., Beauchemin,K.A., and Christensen, D.A. 2002. Chewing activity, saliva production, and ruminal ph of primiparous and multiparous lactating dairy cows. Journal of Dairy Science, 85:1176--1182. https://doi.org/10.3168/jds.S0022-0302(02)74180-5. (PMID: 10.3168/jds.S0022-0302(02)74180-5)
Mertens, D.R., 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beaker or crucibles: collaborative study. Journal of AOAC International, 85, 1217--1240.
Moharrery, A., Larsen, M., and Weisbjerg, M.R. 2014. Starch digestion in the rumen, small intestine, and hind gut of dairy cows – A meta-analysis. Animal Feed Science and Technology, 192, 1--14. https://doi.org/10.1016/j.anifeedsci.2014.03.001. (PMID: 10.1016/j.anifeedsci.2014.03.001)
Newbold, C.J., De la Fuente, G., Belanche, A., Ramos-Morales, E., and McEwan, N.R., 2015. The role of ciliate protozoa in the rumen. Frontiers in Microbiology, 6, 1--14. https://doi.org/10.3389/fmicb.2015.01313. (PMID: 10.3389/fmicb.2015.01313)
NRC, National Research Council, 2007. Nutrient requirements of small ruminants: sheep, goats, cervids, and new world camelids. Washington, D.C.: National Academic Press, 362p.
Patra, A.K., and Yu, Z., 2013. Effects of coconut and fish oils on ruminal methanogenesis, fermentation, and abundance and diversity of microbial populations in vitro. Journal of Dairy Science, 96, 1782--1792. https://doi.org/10.3168/jds.2012-6159. (PMID: 10.3168/jds.2012-6159)
Salami, S.A., Luciano, G., O’Grady, M.N., Biondi, L., Newbold, C.J., Kerry, J.P., and Priolo, A. 2019. Sustainability of feeding plant by-products: A review of the implications for ruminant meat production. Animal Feed Science and Technology, 251, 37--55. https://doi.org/10.1016/j.anifeedsci.2019.02.006. (PMID: 10.1016/j.anifeedsci.2019.02.006)
Santos, R.C., Alves, K.S., Mezzomo, R., Oliveira, L.R.S., Curtim, D.O., Gomes, D.I., Leite, G.P., and Araújo, M.Y.S. 2016. Performance of feedlot lambs fed palm kernel cake-based diets. Tropical Animal Health and Production, 48, 367-372. https://doi.org/10.1007/s11250-015-0960-y.
Schönfeld, P., and Lech Wojtczak, L. 2016. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. Journal of Lipid Research, 57, 943--954. https://doi.org/10.1194/jlr.R067629. (PMID: 10.1194/jlr.R067629)
Shi, L., Zhang, Y., Wu, L., Xun, W., Liu, Q., Cao, T., Hou, G., and Zhou, H. 2020. Moderate coconut oil supplement ameliorates growth performance and ruminal fermentation in hainan black goat kids. Frontiers in Veterinary Science, 7, 622259. https://doi.org/10.3389/fvets.2020.622259. (PMID: 10.3389/fvets.2020.622259)
Silva, T.M., Medeiros, A.N., Oliveira, R.L., Gonzaga Neto, S., Queiroga, R.C.R.E., Ribeiro, R.D.X., Leão, A.G., Bezerra, L.R. 2016. Carcass traits and meat quality of crossbred Boer goats fed peanut cake as a substitute for soybean meal. Journal of Animal Science, 94, 2992–3002. https://doi.org/10.2527/jas.2016-0344. (PMID: 10.2527/jas.2016-0344)
Silva, L.F.P., Dixon, R.M., and Costa, D.F.A. 2019. Nitrogen recycling and feed efficiency of cattle fed protein-restricted diets. Animal Production Science, 59, 2093-2107. https://doi.org/10.1071/an19234. (PMID: 10.1071/an19234)
Silva, L.O., Carvalho, G.G.P., Tosto, M.S.L., Lima, V.G.O., Cirne, L.G.A., Pina, D.S., Santos, S.A., Rodrigues, C.S., Ayresa, M.C.C., and Azevedo, J.A.G. 2020. Digestibility, nitrogen metabolism, ingestive behavior and performance of feedlot goats fed high-concentrate diets with palm kernel cake. Livestock Science, 241, 104226. https://doi.org/10.1016/j.livsci.2020.104226. (PMID: 10.1016/j.livsci.2020.104226)
Silva, L.O., Carvalho, G.G.P., Tosto, M.S.L., Lima, V.G.O., Cirne, G.A., Araújo, M.L.G.M., Pina, D.S., Leite, V.M., Rodrigues, C.S., Mesquita, B.M.A.C. 2021. Effects of palm kernel cake in high-concentrate diets on carcass traits and meat quality of feedlot goats. Livestock Science, 246, 104456. https://doi.org/10.1016/j.livsci.2021.104456.
Silveira, R.M.F., Vasconcelos, A.M., Silva, V.J., Veja, W.H.O., Toro-Mujica, P., and Ferreira, J. (2021). Typification, characterization, and differentiation of sheep production systems in the Brazilian semiarid region. NJAS: Impact of Agricultural and Life Science 93, 48-73. https://doi.org/10.1080/27685241.2021.1956220.
Sniffen, C.J., O’Connor, J.D., Van Soest, P.J., Fox, D.G., and Russell, J.B., 1992. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of Animal Science, 70, 3562--3577. https://doi.org/10.2527/1992.70113562x. (PMID: 10.2527/1992.70113562x)
Souza, N.K.P., Detmann, E., Valadares Filho, S.C., Costa, V.A.C., Pina, D.S., Gomes, D.I., Queiroz, A.C., and Mantovani, H.C., 2013. Accuracy of the estimates of ammonia concentration in rumen fluid using different analytical methods. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 65, 1752--1758. https://doi.org/10.1590/S0102-09352013000600024. (PMID: 10.1590/S0102-09352013000600024)
Stocks, S.E., and Allen, M.S. 2012. Hypophagic effects of propionate increase with elevated hepatic acetyl coenzyme A concentration for cows in the early postpartum period. Journal of Dairy Science, 95, 3259-3268. https://doi.org/10.3168/jds.2011-4991. (PMID: 10.3168/jds.2011-4991)
Sukhija, P.S., and Palmquist, D.L., 1988. Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. Journal of Agricultural and Food Chemistry, 36, 1202--1206. https://doi.org/10.1021/jf00084a019. (PMID: 10.1021/jf00084a019)
Weiss, W.P., 1999. Energy prediction equations for ruminant feeds. In: Cornell nutrition conference for feed manufacturers, 61., 1999, Proceedings... Ithaca: Cornell University, p.176–185.
Weld, K.A., and Armentano, L.E. 2017. The effects of adding fat to diets of lactating dairy cows on total-tract neutral detergent fiber digestibility: A meta-analysis. Journal of Dairy Science, 100, 1766-1779. https://doi.org/10.3168/jds.2016-11500 . (PMID: 10.3168/jds.2016-11500)
Williams, A. G., and Coleman, G.S. 1992. The Rumen Protozoa. Springer-Verlag, New York, NY. (PMID: 10.1007/978-1-4612-2776-2)
Yanza, Y.R., Szumacher-Strabel, M., Jayanegara, A., Kasenta, A.M., Gao, M., Huang, H., Patra, A.K., Warzych, E., and Cieślak, A. 2021. The effects of dietary medium-chain fatty acids on ruminal methanogenesis and fermentation in vitro and in vivo: A meta-analysis. Journal of Animal Physiology and Animal Nutricion, 105, 874--889. https://doi.org/10.1111/jpn.13367. (PMID: 10.1111/jpn.13367)
Yuste, S., Amanzougarene, Z., de la Fuente, G., de Vega, A., and Fondevila, M., 2019. Rumen protozoal dynamics during the transition from milk/grass to high-concentrate based diet in beef calves as affected by the addition of tannins or medium-chain fatty acids. Animal Feed Science and Technology, 257, 114273. https://doi.org/10.1016/J.ANIFEEDSCI.2019.114273. (PMID: 10.1016/J.ANIFEEDSCI.2019.114273)
Zhang, H.L., Chen, Y., Xu, X.L. and Yang, Y.X. 2013. Effects of branched-chain amino acids on in vitro ruminal fermentation of wheat straw. Asian-Australasian Journal of Animal Science, 26(4): 523--528. https://doi.org/10.5713/ajas.2012.12539. (PMID: 10.5713/ajas.2012.12539)
فهرسة مساهمة: Keywords: Alternative feed; Coconut testa; Cocos nucifera L; Husking coconut; Rumen fermentation
المشرفين على المادة: 9004-34-6 (Cellulose)
0 (Propionates)
0 (Dietary Fiber)
N762921K75 (Nitrogen)
تواريخ الأحداث: Date Created: 20221112 Date Completed: 20221115 Latest Revision: 20221209
رمز التحديث: 20221209
DOI: 10.1007/s11250-022-03368-4
PMID: 36370198
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-7438
DOI:10.1007/s11250-022-03368-4