دورية أكاديمية

Diet-derived metabolites and mucus link the gut microbiome to fever after cytotoxic cancer treatment.

التفاصيل البيبلوغرافية
العنوان: Diet-derived metabolites and mucus link the gut microbiome to fever after cytotoxic cancer treatment.
المؤلفون: Schwabkey ZI; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Wiesnoski DH; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Chang CC; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Tsai WB; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Pham D; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Ahmed SS; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Hayase T; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Ortega Turrubiates MR; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., El-Himri RK; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Sanchez CA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Hayase E; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Frenk Oquendo AC; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Miyama T; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Halsey TM; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Heckel BE; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Brown AN; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Jin Y; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Raybaud M; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Prasad R; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Flores I; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., McDaniel L; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Chapa V; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Lorenzi PL; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Warmoes MO; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Tan L; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Swennes AG; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA., Fowler S; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA., Conner M; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA., McHugh K; CPRIT Scholar in Cancer Research, Austin, TX 78701, USA.; Department of Bioengineering, Rice University, Houston, TX 77251, USA., Graf T; Department of Bioengineering, Rice University, Houston, TX 77251, USA., Jensen VB; Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Peterson CB; Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Do KA; Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Zhang L; Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Shi Y; Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Wang Y; Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Galloway-Pena JR; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA., Okhuysen PC; Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Daniel-MacDougall CR; Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Shono Y; Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA., Burgos da Silva M; Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA., Peled JU; Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.; Weill Cornell Medical College, New York, NY 10021, USA.; Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA., van den Brink MRM; Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.; Weill Cornell Medical College, New York, NY 10021, USA.; Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA., Ajami N; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Wargo JA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.; Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Reddy P; Department of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA., Valdivia RH; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA., Davey L; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA., Rondon G; Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Srour SA; Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Mehta RS; Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Alousi AM; Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Shpall EJ; Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Champlin RE; Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Shelburne SA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.; Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Molldrem JJ; Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.; Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Jamal MA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Karmouch JL; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA., Jenq RR; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.; CPRIT Scholar in Cancer Research, Austin, TX 78701, USA.; Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
المصدر: Science translational medicine [Sci Transl Med] 2022 Nov 16; Vol. 14 (671), pp. eabo3445. Date of Electronic Publication: 2022 Nov 16.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: American Association for the Advancement of Science Country of Publication: United States NLM ID: 101505086 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1946-6242 (Electronic) Linking ISSN: 19466234 NLM ISO Abbreviation: Sci Transl Med Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Washington, DC : American Association for the Advancement of Science
مواضيع طبية MeSH: Gastrointestinal Microbiome* , Hematopoietic Stem Cell Transplantation* , Neutropenia*/metabolism , Neoplasms*/metabolism, Mice ; Animals ; Propionates ; Verrucomicrobia ; Mucus/metabolism ; Mucins/metabolism ; Diet
مستخلص: Not all patients with cancer and severe neutropenia develop fever, and the fecal microbiome may play a role. In a single-center study of patients undergoing hematopoietic cell transplant ( n  = 119), the fecal microbiome was characterized at onset of severe neutropenia. A total of 63 patients (53%) developed a subsequent fever, and their fecal microbiome displayed increased relative abundances of Akkermansia muciniphila , a species of mucin-degrading bacteria ( P  = 0.006, corrected for multiple comparisons). Two therapies that induce neutropenia, irradiation and melphalan, similarly expanded A. muciniphila and additionally thinned the colonic mucus layer in mice. Caloric restriction of unirradiated mice also expanded A. muciniphila and thinned the colonic mucus layer. Antibiotic treatment to eradicate A. muciniphila before caloric restriction preserved colonic mucus, whereas A. muciniphila reintroduction restored mucus thinning. Caloric restriction of unirradiated mice raised colonic luminal pH and reduced acetate, propionate, and butyrate. Culturing A. muciniphila in vitro with propionate reduced utilization of mucin as well as of fucose. Treating irradiated mice with an antibiotic targeting A. muciniphila or propionate preserved the mucus layer, suppressed translocation of flagellin, reduced inflammatory cytokines in the colon, and improved thermoregulation. These results suggest that diet, metabolites, and colonic mucus link the microbiome to neutropenic fever and may guide future microbiome-based preventive strategies.
References: Clin Chim Acta. 2019 Feb;489:169-176. (PMID: 29097223)
mBio. 2015 Jul 14;6(4):e00974. (PMID: 26173701)
J Clin Oncol. 2018 Oct 20;36(30):3043-3054. (PMID: 30179565)
Glycobiology. 2022 Mar 30;32(3):182-200. (PMID: 34939101)
Gene. 1995 Dec 29;167(1-2):GC1-10. (PMID: 8566757)
BMC Microbiol. 2020 Mar 24;20(1):65. (PMID: 32209070)
Cell Rep. 2019 Jan 8;26(2):469-482.e5. (PMID: 30625329)
mBio. 2015 Nov 10;6(6):e01282-15. (PMID: 26556271)
Front Cell Infect Microbiol. 2017 Aug 25;7:383. (PMID: 28971068)
Microbiome. 2019 Feb 19;7(1):28. (PMID: 30782206)
Bioinformatics. 2009 Jul 15;25(14):1754-60. (PMID: 19451168)
Sci Rep. 2022 Apr 15;12(1):6244. (PMID: 35428797)
Nature. 2021 Nov;599(7883):120-124. (PMID: 34646011)
Cancers (Basel). 2022 Apr 12;14(8):. (PMID: 35454840)
J Immunol. 2013 Jun 15;190(12):6607-15. (PMID: 23667106)
Shock. 2004 Jan;21(1):31-7. (PMID: 14676681)
Nat Med. 2019 Jul;25(7):1096-1103. (PMID: 31263284)
Blood. 2014 Jul 17;124(3):344-53. (PMID: 24914142)
Appl Environ Microbiol. 2008 Mar;74(6):1936-40. (PMID: 18223105)
Genome Med. 2017 Nov 28;9(1):103. (PMID: 29183332)
Nucleic Acids Res. 2016 Aug 19;44(14):6614-24. (PMID: 27342282)
Nature. 2017 Nov 23;551(7681):457-463. (PMID: 29088705)
Antonie Van Leeuwenhoek. 2018 Jun;111(6):859-873. (PMID: 29460206)
Nutrients. 2016 Jan 14;8(1):. (PMID: 26784223)
Cell Rep. 2017 Apr 25;19(4):733-745. (PMID: 28445725)
Cell Host Microbe. 2015 Nov 11;18(5):582-92. (PMID: 26526499)
Front Cell Infect Microbiol. 2017 Sep 05;7:387. (PMID: 28929087)
Nat Med. 2020 Apr;26(4):589-598. (PMID: 32235930)
PLoS One. 2013 Oct 25;8(10):e76341. (PMID: 24204617)
Am J Physiol Regul Integr Comp Physiol. 2008 Feb;294(2):R402-10. (PMID: 18003793)
Appl Environ Microbiol. 2009 Dec;75(23):7537-41. (PMID: 19801464)
Front Microbiol. 2018 Nov 05;9:2558. (PMID: 30455672)
Turk J Gastroenterol. 2019 Dec;30(12):1030-1035. (PMID: 31854308)
Genome Biol. 2014;15(12):550. (PMID: 25516281)
Science. 2013 Aug 2;341(6145):569-73. (PMID: 23828891)
Clin Infect Dis. 2011 Feb 15;52(4):e56-93. (PMID: 21258094)
Nat Commun. 2020 Oct 9;11(1):5104. (PMID: 33037214)
PLoS One. 2020 Oct 28;15(10):e0236460. (PMID: 33112882)
J Exp Med. 2019 Jan 7;216(1):84-98. (PMID: 30563917)
Nutrients. 2019 Jul 11;11(7):. (PMID: 31336737)
Appl Environ Microbiol. 2017 Aug 31;83(18):. (PMID: 28687644)
Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6. (PMID: 23193283)
Clin Infect Dis. 2012 Oct;55(7):905-14. (PMID: 22718773)
Nat Microbiol. 2019 Dec;4(12):2393-2404. (PMID: 31636419)
Biol Blood Marrow Transplant. 2020 Feb;26(2):392-400. (PMID: 31682980)
J Biol Chem. 1956 Apr;219(2):557-68. (PMID: 13319278)
Bone Marrow Transplant. 2021 Apr;56(4):960-962. (PMID: 33130820)
mBio. 2014 Aug 12;5(4):. (PMID: 25118238)
Gut Microbes. 2020 Nov 9;12(1):1802209. (PMID: 32991816)
MethodsX. 2016 May 09;3:407-16. (PMID: 27284532)
J Bacteriol. 1978 Apr;134(1):84-91. (PMID: 148460)
Science. 2019 Jun 21;364(6446):1179-1184. (PMID: 31221858)
PeerJ. 2016 Oct 18;4:e2584. (PMID: 27781170)
Front Biosci. 2005 Sep 01;10:2193-216. (PMID: 15970487)
J Antimicrob Chemother. 2009 May;63 Suppl 1:i3-13. (PMID: 19372179)
mBio. 2021 May 18;12(3):. (PMID: 34006653)
Cancer. 2006 May 15;106(10):2258-66. (PMID: 16575919)
J Comput Biol. 2012 May;19(5):455-77. (PMID: 22506599)
Cell Mol Gastroenterol Hepatol. 2021;11(4):1023-1044. (PMID: 33238220)
Methods Mol Biol. 2012;842:229-35. (PMID: 22259139)
Cell. 2016 Nov 17;167(5):1339-1353.e21. (PMID: 27863247)
Sci Transl Med. 2016 May 18;8(339):339ra71. (PMID: 27194729)
Nat Methods. 2015 Jan;12(1):59-60. (PMID: 25402007)
Science. 2018 Feb 2;359(6375):592-597. (PMID: 29420293)
J Oncol Pract. 2017 Jun;13(6):e552-e561. (PMID: 28437150)
Science. 2018 Jan 5;359(6371):91-97. (PMID: 29097494)
ISME J. 2011 Feb;5(2):169-72. (PMID: 20827291)
Am J Gastroenterol. 2010 Nov;105(11):2420-8. (PMID: 20648002)
Front Microbiol. 2019 Jun 18;10:1363. (PMID: 31275281)
Nat Med. 2018 Dec;24(12):1809-1814. (PMID: 30323331)
Nat Methods. 2010 May;7(5):335-6. (PMID: 20383131)
PLoS One. 2017 Jul 25;12(7):e0181690. (PMID: 28742883)
Int J Syst Evol Microbiol. 2004 Sep;54(Pt 5):1469-1476. (PMID: 15388697)
Bioinformatics. 2014 Jul 15;30(14):2068-9. (PMID: 24642063)
PLoS One. 2016 Dec 1;11(12):e0166770. (PMID: 27907005)
Nat Biotechnol. 2019 Aug;37(8):852-857. (PMID: 31341288)
Nucleic Acids Res. 2018 Jul 2;46(W1):W95-W101. (PMID: 29771380)
Anal Biochem. 2011 Sep 1;416(1):18-26. (PMID: 21620792)
Cell Host Microbe. 2011 May 19;9(5):390-403. (PMID: 21575910)
Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5. (PMID: 24270786)
معلومات مُعتمدة: P30 CA016672 United States CA NCI NIH HHS; P01 CA023766 United States CA NCI NIH HHS; R01 CA228308 United States CA NCI NIH HHS; R01 HL147584 United States HL NHLBI NIH HHS; R01 HL124112 United States HL NHLBI NIH HHS; K01 AI143881 United States AI NIAID NIH HHS; P30 CA008748 United States CA NCI NIH HHS; K08 HL143189 United States HL NHLBI NIH HHS; R01 HL123340 United States HL NHLBI NIH HHS; S10 OD012304 United States OD NIH HHS; R01 CA228358 United States CA NCI NIH HHS
المشرفين على المادة: 0 (Propionates)
0 (Mucins)
تواريخ الأحداث: Date Created: 20221116 Date Completed: 20221118 Latest Revision: 20240719
رمز التحديث: 20240719
مُعرف محوري في PubMed: PMC10028729
DOI: 10.1126/scitranslmed.abo3445
PMID: 36383683
قاعدة البيانات: MEDLINE