دورية أكاديمية

The innovative 52g Mn for positron emission tomography (PET) imaging: Production cross section modeling and dosimetric evaluation.

التفاصيل البيبلوغرافية
العنوان: The innovative 52g Mn for positron emission tomography (PET) imaging: Production cross section modeling and dosimetric evaluation.
المؤلفون: Barbaro F; INFN, Sezione di Padova, Padova, Italy.; Dipartimento di Fisica dell'Università di Pavia, Pavia, Italy., Canton L; INFN, Sezione di Padova, Padova, Italy., Carante MP; Dipartimento di Fisica dell'Università di Pavia, Pavia, Italy.; INFN, Sezione di Pavia, Pavia, Italy., Colombi A; Dipartimento di Fisica dell'Università di Pavia, Pavia, Italy.; INFN, Sezione di Pavia, Pavia, Italy., De Nardo L; INFN, Sezione di Padova, Padova, Italy.; Dipartimento di Fisica e Astronomia dell'Università di Padova, Padova, Italy., Fontana A; INFN, Sezione di Pavia, Pavia, Italy., Meléndez-Alafort L; Istituto Oncologico Veneto IOV IRCCS, Padova, Italy.
المصدر: Medical physics [Med Phys] 2023 Mar; Vol. 50 (3), pp. 1843-1854. Date of Electronic Publication: 2022 Dec 29.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: John Wiley and Sons, Inc Country of Publication: United States NLM ID: 0425746 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2473-4209 (Electronic) Linking ISSN: 00942405 NLM ISO Abbreviation: Med Phys Subsets: MEDLINE
أسماء مطبوعة: Publication: 2017- : Hoboken, NJ : John Wiley and Sons, Inc.
Original Publication: Lancaster, Pa., Published for the American Assn. of Physicists in Medicine by the American Institute of Physics.
مواضيع طبية MeSH: Positron-Emission Tomography*/methods , Radioisotopes*, Male ; Female ; Mice ; Animals ; Tissue Distribution ; Manganese ; Radiometry
مستخلص: Background: Manganese is a paramagnetic element suitable for magnetic resonance imaging (MRI) of neuronal function. However, high concentrations of Mn 2 + can be neurotoxic. 52g Mn may be a valid alternative as positron emission tomography (PET) imaging agent, to obtain information similar to that delivered by MRI but using trace levels of Mn 2 + , thus reducing its toxicity. Recently, the reaction n a t $^{nat}$ V(α,x) 52g Mn has been proposed as a possible alternative to the standard n a t $^{nat}$ Cr(p,x) 52g Mn one, but improvements in the modeling were needed to better compare the two production routes.
Purpose: This work focuses on the development of precise simulations and models to compare the 52g Mn production from both reactions in terms of amount of activity and radionuclidic purity (RNP), as well as in terms of dose increase (DI) due to the co-produced radioactive contaminants, versus pure 52g MnCl 2 .
Methods: The nuclear code Talys has been employed to optimize the n a t $^{nat}$ V(α,x) 52g Mn cross section by tuning the parameters of the microscopic level densities. Thick-target yields have been calculated from the expression of the rates as energy convolution of cross sections and stopping powers, and finally integrating the time evolution of the relevant decay chains. Dosimetric assessments of [ x x $^{xx}$ Mn]Cl 2 have been accomplished with OLINDA software 2.2.0 using female and male adult phantoms and biodistribution data for 52g MnCl 2 in normal mice. At the end, the yield of x x $^{xx}$ Mn radioisotopes estimated for the two production routes have been combined with the dosimetric results, to assess the DI at different times after the end of the irradiation.
Results: Good agreement was obtained between cross-section calculations and measurements. The comparison of the two reaction channels suggests that n a t $^{nat}$ V(α,x) 52g Mn leads to higher yield and higher purity, resulting in more favorable radiation dosimetry for patients.
Conclusions: Both n a t $^{nat}$ V(α,x) and n a t $^{nat}$ Cr(p,x) production routes provide clinically acceptable 52g MnCl 2 for PET imaging. However, the n a t $^{nat}$ V(α,x) 52g Mn reaction provides a DI systematically lower than the one obtainable with n a t $^{nat}$ Cr(p,x) 52g Mn and a longer time window in which it can be used clinically (RNP ≥ 99%).
(© 2022 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.)
References: Saar G, Millo CM, Szajek LP, Bacon J, Herscovitch P, Koretsky AP. Anatomy, functionality, and neuronal connectivity with manganese radiotracers for positron emission tomography. Mol Imaging Biol. 2018;20(4):562-574. https://doi.org/10.3389/fncir.2018.00114.
Napieczynska H, Severin GW, Fonslet J, et al. Imaging neuronal pathways with 52Mn PET. Neuroimage. 2017;158:112-125. https://doi.org/10.1016/j.neuroimage.2017.06.058.
Li K, Yang Y, Guo D, Sun D, Li C. Clinical and MRI features of posterior reversible encephalopathy syndrome with atypical regions: a descriptive study with a large sample size. Front Neurol. 2020;11:194. https://doi.org/10.3389/fneur.2020.00194.
Graves SA, Hernandez R, Valdovinos HF, et al. Preparation and in vivo characterization of 51MnCl2 as PET tracer of Ca2 + channel-mediated transport. Sci Rep. 2017;7:3033.
Coenen HH, Gee AD, Adam M, et al. Consensus nomenclature rules for radiopharmaceutical chemistry - Setting the record straight. Nucl Med Biol. 2017;55:v-xi. https://doi.org/10.1016/j.nucmedbio.2017.09.004.
Wooten AL, Aweda TA, Lewis BC, Gross RB, Lapi SE. Biodistribution and PET Imaging of pharmacokinetics of manganese in mice using Manganese-52. PLoS One. 2017;12:e017435. https://doi.org/10.1371/journal.pone.0174351.
El Sayed R, Massicano AVF, Queern SL, Loveless CS, Lapi SE. Manganese-52 production cross-section measurements via irradiation of natural chromium targets up to 20 MeV. Appl Radiat Isot. 2019;147:165-170. https://doi.org/10.1016/j.apradiso.2019.02.017.
Goriely S, Hilaire S, Koning AJ. Improved predictions of nuclear reaction rates with the TALYS reaction code for astrophysical applications. Astron Astrophys. 2008;487:767. https://doi.org/10.1051/0004-6361:20078825.
Colombi A, Carante M, Barbaro F, Canton L, Fontana A. Production of high-purity 52gMn from nat$^{nat}$V targets with α beams at cyclotrons. Nucl Technol. 2022;208:735-752. https://doi.org/10.1080/00295450.2021.1947122.
Cline C, Blann M. The pre-equilibrium statistical model: description of the nuclear equilibration process and parameterization of the model. Nucl Phys A. 1971;172:225-259. https://doi.org/10.1016/0375-9474(71)90713-5.
Feshbach H, Kerman A, Koonin S. The statistical theory of multi-step compound and direct reactions. Ann Phys. 1980;125:429-476. https://doi.org/10.1016/0003-4916(80)90140-2.
Barbaro F, Canton L, Carante MP, et al. New results on proton-induced reactions on vanadium for 47Sc production and the impact of level densities on theoretical cross sections. Phys Rev C. 2021;104:044619. https://doi.org/10.1103/PhysRevC.104.044619.
De Nardo L, Ferro-Flores G, Bolzati C, Esposito J, Meléndez-Alafort L. Radiation effective dose assessment of [51Mn]- and [52Mn]-chloride. Appl Radiat Isot. 2019;153:108805. https://doi.org/10.1016/j.apradiso.2019.108805.
Hilaire S, Girod M, Goriely S, Koning AJ. Temperature-dependent combinatorial level densities with the D1M Gogny force. Phys Rev C. 2012;86:064317. https://doi.org/10.1103/PhysRevC.86.064317.
Avrigeanu V, Avrigeanu M, Mănăilescu C. Further explorations of the α-particle optical model potential at low energies for the mass range A≈45$A\approx 45$-209. Phys Rev C. 2014;90:044612. https://doi.org/10.1103/PhysRevC.90.044612.
Capote R, Herman M, Oblovzinsk‘y P, et al. RIPL - Reference input parameter library for calculation of nuclear reactions and nuclear data evaluations. Nucl Data Sheets. 2009;110(12):3107-3214. Special Issue on Nuclear Reaction Data.
Canton L, Fontana A. Nuclear physics applied to the production of innovative radiopharmaceuticals. Eur Phys J Plus. 2020;135(9):770. https://doi.org/10.1140/epjp/s13360-020-00730-z.
Leo WR. Techniques for Nuclear and Particle Physics Experiments. Springer; 1994.
ICRP 107. Nuclear decay data for dosimetric calculations. ICRP Publication 107. Ann. ICRP. 2008;38(3).https://www.icrp.org/publication.asp?id=ICRP%20Publication%20107.
Hernandez R, Graves SA, Gregg T, et al. Radiomanganese PET detects changes in functional β-cell mass in mouse models of diabetes. Diabetes. 2017;66:2163-2174. https://doi.org/10.2337/db16-1285.
Sparks R, Aydogan B. Comparison of the effectiveness of some common animal data scaling techniques in estimating human radiation dose. Sixth International Radiopharmaceutical Dosimetry Symposium. 1999:705-716. www.osti.gov/servlets/purl/684479.
Meléndez-Alafort L, Rosato A, Ferro-Flores G, Penev I, Uzunov N. Development of a five-compartmental model ad software for pharmacokinetic studies. Comptes Rendus L'Academie Bulg Des Sci. 2017;70:1649-54.
Mahoney J, Small W. Studies on manganese: III. The biological half-life of radiomanganese in man and factors which affect this half-life. J Clin Investig. 1968;47:643-653. https://doi.org/10.1172/JCI105760.
Stabin M, Farmer A. OLINDA/EXM 2.0: The new generation dosimetry modeling code. J Nucl Med. 2012;53:585-585.
Stabin M, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46:1023-1027.
Stabin M, Siegel J. Radar dose estimate report: a compendium of radiopharmaceutical dose estimates based on OLINDA/EXM version 2.0. J Nucl Med. 2017;59:154-160. https://doi.org/10.2967/jnumed.117.196261.
Stabin M, Xu XG, Emmons MA, Segars WP, Shi C, Fernald MJ. RADAR Reference adult, pediatric, and pregnant female phantom series for internal and external dosimetry. J Nucl Med. 2012;53:1807-1813. https://doi.org/10.2967/jnumed.112.106138.
ICRP 89. Basic anatomical and physiological data for use in radiological protection reference values. ICRP Publication 89. Ann ICRP. 2002;32(3-4):2002. https://www.icrp.org/publication.asp?id=icrp%20publication%2089.
ICRP 103. ICRP 2007 The 2007 recommendations of the international commission on radiological protection. ICRP Publication 103. Ann ICRP. 2007;37(2-4).https://www.icrp.org/publication.asp?id=ICRP%20Publication%20103.
Dmitriev PP, Konstantinov IO, Krasnov NN. Methods for producing the Mn52 isotope. At Energy. 1969;26(5):539-541.
Bowman WW, Blann M. Reactions of 51V and 27Al with 7-120 MeV α-particles (equilibrium and non-equilibrium statistical analyses). Nucl Phys A. 1969;131(3):513-531. https://doi.org/10.1016/0375-9474(69)90592-2.
Michel R, Brinkmann G, Stück R. Measurement and hybrid model analysis of integral excitation functions for α-induced reactions on vanadium and manganese. In: Böckhoff KH. eds. Nuclear Data for Science and Technology. Springer; 1983:599-600. https://doi.org/10.1016/0375-9474(85)90441-5.
Rao JR, Rao AVM, Mukherjee S et al. Non-equilibrium effects in α-particle-induced reactions in light, medium and heavy nuclei up to 120 MeV. J Phys G: Nucl Phys. 1987;13(4):535. https://doi.org/10.1088/0305-4616/13/4/017.
West HI, Lanier RG, Mustafa MG. 52Cr(p,n)52g,m${}^{52g,m}$Mn and 52Cr(d,2n)52g,m${}^{52g,m}$Mn excitation functions. Phys Rev C. 1987;35:2067-2076. https://doi.org/10.1103/PhysRevC.35.2067.
Sonzogni AA, Romo ASMA, Mosca HO, Nassiff SJ. Alpha and deuteron induced reactions on vanadium. J Radioanal Nucl Chem. 1993;170(1):143-156.
Ismail M. Measurement of excitation functions and mean projected recoil ranges of nuclei in α-induced reactions on F, Al, V, Co and Re nuclei. Pramana. 1993;40(3):227.
Singh NL, Mukherjee S, Mohan Rao AV, Chaturvedi L, Singh PP. Effects of pre-equilibrium nucleon emission on excitation functions of various reactions in vanadium induced by alpha particles. J Phys G: Nucl Part Phys. 1995;21(3):399.
Chowdhury DP, Pal S, Saha SK, Gangadharan S. Determination of cross section of α-induced nuclear reaction on natural Cr and Zr by stacked foil activation for thin layer activation analysis. Nucl Instrum Methods Phys Res, Sect B. 1995;103(3):261-266. https://doi.org/10.1016/0168-583X(95)00663-X.
Kumar BB, Mukherjee S, Singh NL. Pre-equilibrium model analysis of alpha particle induced reactions up to 80MeV. 1998;57(2):201-206. https://doi.org/10.1088/0031-8949/57/2/007.
Peng X, He F, Long X. Excitation functions for α-induced reactions on vanadium. Nucl Instrum Methods Phys Res, Sect B. 1999;152:432-436.
EXFOR database. 2022. Last Date Accessed: 18 April 2022 https://www-nds.iaea.org/exfor/exfor.html.
Ali B, Al-Abyad M, Seddik U, et al. Activation cross-section data for α-particle-induced nuclear reactions on natural vanadium for practical applications. Pramana - J Phys. 2018;90(3):41. https://doi.org/10.1007/s12043-018-1527-z.
Levkovskij VN. Cross-Section of Medium Mass Nuclide Activation (A = 40-100) by Medium Energy Protons and Alpha-Particles (E = 10-50 MeV). Inter-Vesi; 1991.
Singh NL, Agarwal S, Rao JR. Excitation function for α-particle-induced reactions in light-mass nuclei. Can J Phys. 1993;71(3-4):115. https://doi.org/10.1139/p93-017.
Hansper VY, Morton AJ, Tims SG, Tingwell CIW, Scott AF, Sargood DG. Cross sections and thermonuclear reaction rates for 51V(α,n)54Mn and 51V (α,p)54Cr. Nucl Phys A. 1993;551(1):158-172. https://doi.org/10.1016/0375-9474(93)90309-L.
Stabin M. Health concerns related to radiation exposure of the female nuclear medicine patient. Environ Health Perspect. 1997;105:1403-9. https://doi.org/10.1289/ehp.97105s61403.
EANM. EANM 2019 Radiopharmacy: An Update. European Association of Nuclear Medicine. 2019. https://www.eanm.org/publications/technologists-guide.
Brandt M, Cardinale J, Rausch I, Mindt T, Label J. Manganese in PET imaging: opportunities and challenges. Compd Radiopharm. 2019;62:8. https://doi.org/10.1002/jlcr.3754.
De Nardo L, Pupillo G, Mou L, et al. Preliminary dosimetric analysis of DOTA-folate radiopharmaceutical radiolabelled with 47Sc produced through nat$^{nat}$V(p,x)47Sc cyclotron irradiation. Phys Med Biol. 2021;66:025003. https://doi.org/10.1088/1361-6560/abc811.
Meléndez-Alafort L, Ferro-Flores G, De Nardo L, et al. Internal radiation dose assessment of radiopharmaceuticals prepared with cyclotron-produced 99mTc. Med Phys. 2019;46:1437-1446. https://doi.org/10.1002/mp.13393.
فهرسة مساهمة: Keywords: 52gMn dosimetry; cyclotron-based radiopharmaceuticals; nuclear cross section
المشرفين على المادة: 0 (Radioisotopes)
42Z2K6ZL8P (Manganese)
تواريخ الأحداث: Date Created: 20221126 Date Completed: 20230321 Latest Revision: 20230321
رمز التحديث: 20240829
DOI: 10.1002/mp.16130
PMID: 36433924
قاعدة البيانات: MEDLINE
الوصف
تدمد:2473-4209
DOI:10.1002/mp.16130