دورية أكاديمية

Pathogen and Antibody Identification in Children with Encephalitis in Myanmar.

التفاصيل البيبلوغرافية
العنوان: Pathogen and Antibody Identification in Children with Encephalitis in Myanmar.
المؤلفون: Galardi MM; Department of Neurology, Washington University School of Medicine, St. Louis, MO., Sowa GM; Department of Medicine, McGaw Medical Center of Northwestern University, Chicago, IL., Crockett CD; Department of Neurology, Washington University School of Medicine, St. Louis, MO., Rudock R; Department of Neurology, Washington University School of Medicine, St. Louis, MO., Smith AE; Department of Neurology, Washington University School of Medicine, St. Louis, MO., Shwe EE; Department of Pathology, Yangon Children's Hospital, Institute of Medicine 1, Yangon, Myanmar., San T; Department of Pathology, Yangon Children's Hospital, Institute of Medicine 1, Yangon, Myanmar., Linn K; Department of Pediatrics, Yangon Children's Hospital, Institute of Medicine 1, Yangon, Myanmar., Aye AMM; Department of Pediatrics, Yangon Children's Hospital, Institute of Medicine 1, Yangon, Myanmar., Ramachandran PS; Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA., Zia M; Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA., Wapniarski AE; Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA., Hawes IA; Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA., Hlaing CS; Department of Pediatrics, Yangon Children's Hospital, Institute of Medicine 1, Yangon, Myanmar., Kyu EH; Department of Pediatrics, Yangon Children's Hospital, Institute of Medicine 1, Yangon, Myanmar., Thair C; Department of Pediatrics, Yangon Children's Hospital, Institute of Medicine 1, Yangon, Myanmar., Mar YY; Department of Pediatrics, Yangon Children's Hospital, Institute of Medicine 1, Yangon, Myanmar., Nway N; Department of Pediatrics, Yangon Children's Hospital, Institute of Medicine 1, Yangon, Myanmar., Storch GA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO., Wylie KM; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO., Wylie TN; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO., Dalmau J; Neuroimmunology Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer Hospital Clínic, University of Barcelona, Barcelona, Spain.; Department of Neurology, University of Pennsylvania, Philadelphia, PA.; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain., Wilson MR; Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA., Mar SS; Department of Neurology, Washington University School of Medicine, St. Louis, MO.
المصدر: Annals of neurology [Ann Neurol] 2023 Mar; Vol. 93 (3), pp. 615-628. Date of Electronic Publication: 2022 Dec 12.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 7707449 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1531-8249 (Electronic) Linking ISSN: 03645134 NLM ISO Abbreviation: Ann Neurol Subsets: MEDLINE
أسماء مطبوعة: Publication: New York, NY : Wiley-Liss
Original Publication: Boston, Little, Brown.
مواضيع طبية MeSH: Meningitis*/cerebrospinal fluid , Meningitis*/diagnosis , Encephalitis*/cerebrospinal fluid , Communicable Diseases* , Infectious Encephalitis* , Autoimmune Diseases of the Nervous System*, Child ; Humans ; Prospective Studies ; Myanmar
مستخلص: Objective: Prospective studies of encephalitis are rare in regions where encephalitis is prevalent, such as low middle-income Southeast Asian countries. We compared the diagnostic yield of local and advanced tests in cases of pediatric encephalitis in Myanmar.
Methods: Children with suspected subacute or acute encephalitis at Yangon Children's Hospital, Yangon, Myanmar, were prospectively recruited from 2016-2018. Cohort 1 (n = 65) had locally available diagnostic testing, whereas cohort 2 (n = 38) had advanced tests for autoantibodies (ie, cell-based assays, tissue immunostaining, studies with cultured neurons) and infections (ie, BioFire FilmArray multiplex Meningitis/Encephalitis multiplex PCR panel, metagenomic sequencing, and pan-viral serologic testing [VirScan] of cerebrospinal fluid).
Results: A total of 20 cases (13 in cohort 1 and 7 in cohort 2) were found to have illnesses other than encephalitis. Of the 52 remaining cases in cohort 1, 43 (83%) had presumed infectious encephalitis, of which 2 cases (4%) had a confirmed infectious etiology. Nine cases (17%) had presumed autoimmune encephalitis. Of the 31 cases in cohort 2, 23 (74%) had presumed infectious encephalitis, of which one (3%) had confirmed infectious etiology using local tests only, whereas 8 (26%) had presumed autoimmune encephalitis. Advanced tests confirmed an additional 10 (32%) infections, 4 (13%) possible infections, and 5 (16%) cases of N-methyl-D-aspartate receptor antibody encephalitis.
Interpretation: Pediatric encephalitis is prevalent in Myanmar, and advanced technologies increase identification of treatable infectious and autoimmune causes. Developing affordable advanced tests to use globally represents a high clinical and research priority to improve the diagnosis and prognosis of encephalitis. ANN NEUROL 2023;93:615-628.
(© 2022 American Neurological Association.)
References: Vora NM, Holman RC, Mehal JM, et al. Burden of encephalitis-associated hospitalizations in the United States, 1998-2010. Neurology 2014;82:443-451.
Venkatesan A, Tunkel AR, Bloch KC, et al. Case definitions, diagnostic algorithms, and priorities in encephalitis: consensus statement of the international encephalitis consortium. Clin Infect Dis 2013;57:1114-1128.
Koskiniemi M, Korppi M, Mustonen K, et al. Epidemiology of encephalitis in children. A prospective multicentre study. Eur J Pediatr 1997;156:541-545.
Britton PN, Khoury L, Booy R, et al. Encephalitis in Australian children: contemporary trends in hospitalisation. Arch Dis Child 2016;101:51-56.
Glaser CA, Honarmand S, Anderson LJ, et al. Beyond viruses: clinical profiles and etiologies associated with encephalitis. Clin Infect Dis 2006;43:1565-1577.
Granerod J, Crowcroft NS. The epidemiology of acute encephalitis. Neuropsychol Rehabil 2007;17:406-428.
Granerod J, Ambrose HE, Davies NW, et al. Causes of encephalitis and differences in their clinical presentations in England: a multicentre, population-based prospective study. Lancet Infect Dis 2010;10:835-844.
Saha S, Ramesh A, Kalantar K, et al. Unbiased metagenomic sequencing for pediatric meningitis in Bangladesh reveals neuroinvasive chikungunya virus outbreak and other unrealized pathogens. MBio 2019;10:e02877-19.
Guerrero MP, Romero AF, Luengas M, et al. Etiology and risk factors for admission to the pediatric intensive care unit in children with encephalitis in a developing country. Pediatr Infect Dis J 2022;41:806-812.
Dalmau JGF. Importance, definitions, history, classification, and frequency of the autoimmune encephalitides. Autoimmune Encephalitis and Related Autoimmune Disorders of the Central Nervous System. Cambridge: Cambridge University Press, 2022:1-18.
Armangue T, Olive-Cirera G, Martinez-Hernandez E, et al. Associations of paediatric demyelinating and encephalitic syndromes with myelin oligodendrocyte glycoprotein antibodies: a multicentre observational study. Lancet Neurol 2020;19:234-246.
Srey VH, Sadones H, Ong S, et al. Etiology of encephalitis syndrome among hospitalized children and adults in Takeo, Cambodia, 1999-2000. Am J Trop Med Hyg 2002;66:200-207.
John CC, Carabin H, Montano SM, et al. Global research priorities for infections that affect the nervous system. Nature 2015;527:S178-S186.
Lee TC, Tsai CP, Yuan CL, et al. Encephalitis in Taiwan: a prospective hospital-based study. Jpn J Infect Dis 2003;56:193-199.
Joshi R, Mishra PK, Joshi D, et al. Clinical presentation, etiology, and survival in adult acute encephalitis syndrome in rural Central India. Clin Neurol Neurosurg 2013;115:1753-1761.
Olsen SJ, Campbell AP, Supawat K, et al. Infectious causes of encephalitis and meningoencephalitis in Thailand, 2003-2005. Emerg Infect Dis 2015;21:280-289.
Pommier JD, Gorman C, Crabol Y, et al. Childhood encephalitis in the Greater Mekong region (the SouthEast Asia Encephalitis Project): a multicentre prospective study. Lancet Glob Health 2022;10:e989-e1002.
Graus F, Titulaer MJ, Balu R, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 2016;15:391-404.
Xu GJ, Kula T, Xu Q, et al. Viral immunology. Comprehensive serological profiling of human populations using a synthetic human virome. Science 2015;348:aaa0698.
Schubert RD, Hawes IA, Ramachandran PS, et al. Pan-viral serology implicates enteroviruses in acute flaccid myelitis. Nat Med 2019;25:1748-1752.
Dalmau J, Graus F. Antibody-mediated encephalitis. N Engl J Med 2018;378:840-851.
Lai M, Huijbers MG, Lancaster E, et al. Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series. Lancet Neurol 2010;9:776-785.
Irani SR, Alexander S, Waters P, et al. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan's syndrome and acquired neuromyotonia. Brain 2010;133:2734-2748.
Lancaster E, Lai M, Peng X, et al. Antibodies to the GABA(B) receptor in limbic encephalitis with seizures: case series and characterisation of the antigen. Lancet Neurol 2010;9:67-76.
Dalmau J, Gleichman AJ, Hughes EG, et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol 2008;7:1091-1098.
Lai M, Hughes EG, Peng X, et al. AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location. Ann Neurol 2009;65:424-434.
Leber AL, Everhart K, Balada-Llasat JM, et al. Multicenter evaluation of BioFire FilmArray meningitis/encephalitis panel for detection of bacteria, viruses, and yeast in cerebrospinal fluid specimens. J Clin Microbiol 2016;54:2251-2261.
Leber AL, Everhart K, Daly JA, et al. Multicenter evaluation of BioFire FilmArray respiratory panel 2 for detection of viruses and bacteria in nasopharyngeal swab samples. J Clin Microbiol 2018;56:e01945-17.
Wylie KM, Blanco-Guzman M, Wylie TN, et al. High-throughput sequencing of cerebrospinal fluid for diagnosis of chronic Propionibacterium acnes meningitis in an allogeneic stem cell transplant recipient. Transpl Infect Dis 2016;18:227-233.
Wylie KM, Wylie TN, Buller R, et al. Detection of viruses in clinical samples by use of metagenomic sequencing and targeted sequence capture. J Clin Microbiol 2018;56:e01123-18.
Wylie TN, Wylie KM, Herter BN, Storch GA. Enhanced virome sequencing using targeted sequence capture. Genome Res 2015;25:1910-1920.
Leon KE, Schubert RD, Casas-Alba D, et al. Genomic and serologic characterization of enterovirus A71 brainstem encephalitis. Neurol Neuroimmunol Neuroinflamm 2020;7:e703.
Wilson MR, Sample HA, Zorn KC, et al. Clinical metagenomic sequencing for diagnosis of meningitis and encephalitis. N Engl J Med 2019;380:2327-2340.
Wilson MR, O'Donovan BD, Gelfand JM, et al. Chronic meningitis investigated via metagenomic next-generation sequencing. JAMA Neurol 2018;75:947-955.
Wylie KM, Wylie TN, Buller R, et al. Detection of viruses in clinical samples using metagenomic sequencing and targeted sequence capture. J Clin Microbiol 2018;56:e01123-18.
Wylie TN, Wylie KM. ViroMatch: a computational pipeline for the detection of viral sequences from complex metagenomic data. Microbiol Resour Announc 2021;10:e01468-20.
Vazquez SE, Mann SA, Bodansky A, et al. Autoantibody discovery across monogenic, acquired, and COVID19-associated autoimmunity with scalable PhIP-Seq. bioRxiv 2022;11:e78550.
Zamecnik CR, Rajan JV, Yamauchi KA, et al. ReScan, a multiplex diagnostic pipeline, pans human sera for SARS-CoV-2 antigens. Cell Rep Med 2020;1:100123.
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009;10:R25.
Ramachandran PS, Ramesh A, Creswell FV, et al. Integrating central nervous system metagenomics and host response for diagnosis of tuberculosis meningitis and its mimics. Nat Commun 2022;13:1675.
Kalantar KL, Carvalho T, de Bourcy CFA, et al. IDseq-An open source cloud-based pipeline and analysis service for metagenomic pathogen detection and monitoring. Gigascience 2020;9:giaa111.
Burke DS, Lorsomrudee W, Leake CJ, et al. Fatal outcome in Japanese encephalitis. Am J Trop Med Hyg 1985;34:1203-1210.
Fischer M, Lindsey N, Staples JE, et al. Japanese encephalitis vaccines: recommendations of the advisory committee on immunization practices (ACIP). MMWR Recomm Rep 2010;59:1-27.
Thein S, Aung H, Sebastian AA. Study of vector, amplifier, and human infection with Japanese encephalitis virus in a Rangoon community. Am J Epidemiol 1988;128:1376-1382.
Erlanger TE, Weiss S, Keiser J, et al. Past, present, and future of Japanese encephalitis. Emerg Infect Dis 2009;15:1-7.
Boucher A, Herrmann JL, Morand P, et al. Epidemiology of infectious encephalitis causes in 2016. Med Mal Infect 2017;47:221-235.
Forbes JD, Knox NC, Ronholm J, et al. Metagenomics: the next culture-independent game changer. Front Microbiol 2017;8:1069.
Goldberg B, Sichtig H, Geyer C, et al. Making the leap from research laboratory to clinic: challenges and opportunities for next-generation sequencing in infectious disease diagnostics. MBio 2015;6:e01888-15.
Tansarli GS, Chapin KC. Diagnostic test accuracy of the BioFire® FilmArray® meningitis/encephalitis panel: a systematic review and meta-analysis. Clin Microbiol Infect 2020;26:281-290.
Ramachandran PS, Wilson MR. Metagenomics for neurological infections - expanding our imagination. Nat Rev Neurol 2020;16:547-556.
Bohl JA, Lay S, Chea S, et al. Discovering disease-causing pathogens in resource-scarce Southeast Asia using a global metagenomic pathogen monitoring system. Proc Natl Acad Sci U S A 2022;119:e2115285119.
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020;579:265-269.
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020;579:270-273.
Johnson TP, Larman HB, Lee MH, et al. Chronic dengue virus panencephalitis in a patient with progressive dementia with extrapyramidal features. Ann Neurol 2019;86:695-703.
Mishra N, Ng TFF, Marine RL, et al. Antibodies to enteroviruses in cerebrospinal fluid of patients with acute flaccid myelitis. MBio 2019;10:e01903-19.
Park A, Suh SI, Son GR, et al. Respiratory syncytial virus-related encephalitis: magnetic resonance imaging findings with diffusion-weighted study. Neuroradiology 2014;56:163-168.
Wang CJ, Zeng ZL, Zhang FS, Guo SG. Clinical features of adult anti-N-methyl-d-aspartate receptor encephalitis after Japanese encephalitis. J Neurol Sci 2020;417:117080.
Pastel H, Chakrabarty B, Saini L, et al. A case of anti- N-methyl-D-aspartate (NMDA) receptor encephalitis possibly triggered by an episode of Japanese B encephalitis. Neurol India 2017;65:895-897.
Dalmau J, Geis C, Graus F. Autoantibodies to synaptic receptors and neuronal cell surface proteins in autoimmune diseases of the central nervous system. Physiol Rev 2017;97:839-887.
Kalita J, Misra UK, Mani VE, Bhoi SK. Can we differentiate between herpes simplex encephalitis and Japanese encephalitis? J Neurol Sci 2016;366:110-115.
Rodino KG, Toledano M, Norgan AP, et al. Retrospective review of clinical utility of shotgun metagenomic sequencing testing of cerebrospinal fluid from a U.S. tertiary care medical center. J Clin Microbiol 2020;58:e01729-20.
Turner P, Suy K, Tan LV, et al. The aetiologies of central nervous system infections in hospitalised Cambodian children. BMC Infect Dis 2017;17:806.
Saraya A, Mahavihakanont A, Shuangshoti S, et al. Autoimmune causes of encephalitis syndrome in Thailand: prospective study of 103 patients. BMC Neurol 2013;13:150.
Hong NTT, Anh NT, Mai NTH, et al. Performance of metagenomic next-generation sequencing for the diagnosis of viral meningoencephalitis in a resource-limited setting. Open Forum Infect Dis 2020;7:ofaa046.
Saha S, Malaker R, Sajib MSI, et al. Complete genome sequence of a novel coronavirus (SARS-CoV-2) isolate from Bangladesh. Microbiol Resour Announc. 2020;9:e00568-20.
Greninger AL, Naccache SN, Federman S, et al. Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis. Genome Med 2015;7:99.
Botti-Lodovico Y, Nair P, Nosamiefan D, et al. The origins and future of sentinel: An early-warning system for pandemic preemption and response. Viruses 2021;13:1605.
معلومات مُعتمدة: K08 NS096117 United States NS NINDS NIH HHS
SCR Disease Name: Hashimoto's encephalitis
تواريخ الأحداث: Date Created: 20221129 Date Completed: 20230227 Latest Revision: 20230329
رمز التحديث: 20230329
DOI: 10.1002/ana.26560
PMID: 36443898
قاعدة البيانات: MEDLINE
الوصف
تدمد:1531-8249
DOI:10.1002/ana.26560