دورية أكاديمية

Differentiating and Managing Rare Thrombotic Microangiopathies During Pregnancy and Postpartum.

التفاصيل البيبلوغرافية
العنوان: Differentiating and Managing Rare Thrombotic Microangiopathies During Pregnancy and Postpartum.
المؤلفون: Lim MY; Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, and the Department of Obstetrics and Gynecology, University of Utah and Intermountain Healthcare, Salt Lake City, Utah., Abou-Ismail MY, Branch DW
المصدر: Obstetrics and gynecology [Obstet Gynecol] 2023 Jan 01; Vol. 141 (1), pp. 85-108. Date of Electronic Publication: 2022 Dec 02.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Lippincott Williams & Wilkins Country of Publication: United States NLM ID: 0401101 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1873-233X (Electronic) Linking ISSN: 00297844 NLM ISO Abbreviation: Obstet Gynecol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2004- : Hagerstown, MD : Lippincott Williams & Wilkins
Original Publication: New York.
مواضيع طبية MeSH: Pre-Eclampsia* , Thrombotic Microangiopathies*/diagnosis , Thrombotic Microangiopathies*/etiology , Thrombotic Microangiopathies*/therapy , Purpura, Thrombotic Thrombocytopenic*/diagnosis , Purpura, Thrombotic Thrombocytopenic*/therapy , Hemolytic-Uremic Syndrome*/diagnosis , HELLP Syndrome*/diagnosis , HELLP Syndrome*/therapy, Pregnancy ; Female ; Humans ; Postpartum Period
مستخلص: The most common thrombotic microangiopathy (TMA) of pregnancy is the well-recognized syndrome of preeclampsia with hemolysis, elevated liver enzymes, and low platelet count (HELLP) syndrome. However, rare TMAs, including thrombotic thrombocytopenic purpura, complement-mediated hemolytic-uremic syndrome, and catastrophic antiphospholipid syndrome, may occur during pregnancy or postpartum and present with features similar to those of preeclampsia with severe features. Early recognition and treatment of these infrequently encountered conditions are key for avoiding serious maternal morbidities with long-term sequelae and possible maternal or fetal death. Differentiating between preeclampsia with severe features and these rare TMAs is diagnostically challenging as there is significant overlap in their clinical and laboratory presentation. Given the rarity of these TMAs, high-quality evidence-based recommendations on diagnosis and management during pregnancy are lacking. Using current objective information and recommendations from working groups, this report provides practical clinical approaches to diagnose and manage these rare TMAs. This report also discusses how to manage individuals with a history of these rare TMAs who are planning to conceive. To optimize favorable outcomes, a multidisciplinary approach including obstetricians, maternal-fetal medicine specialists, hematologists, and nephrologists alongside close clinical and laboratory monitoring is vital.
Competing Interests: Financial Disclosure Ming Yeong Lim received payment for participation in advisory boards from Takeda, Dova Pharmaceuticals, and Forma Therapeutics. D. Ware Branch received payment as a Member of the UCB Women with Inflammatory Disease Advisory Board in September of 2020. He received payment for Grand Rounds at the University of Iowa (Obstetric antiphospholipid syndrome: A tale of two patients. October 27, 2020). He also received payment for Obstetric antiphospholipid syndrome: Diagnosis, treatment, controversies. American Society for Clinical Laboratory Service Region VIII Annual Seminar, October 20, 2020. Dr. Branch also disclosed receiving payment for the following: Swanson, Martin & Bell, medical expert consultancy, check issued September 21, 2020; Association of Idaho Rheumatologists, Obstetric antiphospholipid syndrome. December 4, 2021; Bendin Sumrall & Ladner medical expert consultancy; Michigan Professional Insurance Exchange medical expert consultancy; Grand Rounds, Cornell University/Hospital for Special Surgery Division of Rheumatology, Obstetric antiphospholipid syndrome: A tale of three patients, May 26, 2021; Bendin Sumrall & Ladner medical expert consultancy; Gershon, Willoughby & Getz medical expert consultancy; Snow, Christensen & Matineau medical expert consultancy; Grand Rounds, Cornell University/Hospital for Special Surgery Division of Rheumatology, Obstetric antiphospholipid syndrome: A tale of three patients, May 26, 2021; Grand Rounds, University of New York, Stonybrook, November 3, 2021. Mouhamed Yazan Abou-Ismail did not report any potential conflicts of interest.
(Copyright © 2022 by the American College of Obstetricians and Gynecologists. Published by Wolters Kluwer Health, Inc. All rights reserved.)
References: George JN, Nester CM. Syndromes of thrombotic microangiopathy. N Engl J Med 2014;371:654–66. doi: 10.1056/NEJMra1312353. (PMID: 10.1056/NEJMra1312353)
Moatti-Cohen M, Garrec C, Wolf M, Boisseau P, Galicier L, Azoulay E, et al. Unexpected frequency of Upshaw-Schulman syndrome in pregnancy-onset thrombotic thrombocytopenic purpura. Blood 2012;119:5888–97. doi: 10.1182/blood-2012-02-408914. (PMID: 10.1182/blood-2012-02-408914)
Gestational hypertension and preeclampsia. ACOG Practice Bulletin No. 222. American College of Obstetricians and Gynecologists. Obstet Gynecol 2020;135:e237–60. doi: 10.1097/AOG.0000000000003891. (PMID: 10.1097/AOG.0000000000003891)
Sibai BM. Imitators of severe preeclampsia. Obstet Gynecol 2007;109:956–66. doi: 10.1097/01.AOG.0000258281.22296.de. (PMID: 10.1097/01.AOG.0000258281.22296.de)
Nelson DB, Byrne JJ, Cunningham FG. Acute fatty liver of pregnancy. Obstet Gynecol 2021;137:535–46. doi: 10.1097/AOG.0000000000004289. (PMID: 10.1097/AOG.0000000000004289)
Furlan M, Robles R, Lammle B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood 1996;87:4223–34.
Furlan M, Robles R, Solenthaler M, Wassmer M, Sandoz P, Lammle B. Deficient activity of von Willebrand factor-cleaving protease in chronic relapsing thrombotic thrombocytopenic purpura. Blood 1997;89:3097–103.
Moake JL, Rudy CK, Troll JH, Weinstein MJ, Colannino NM, Azocar J, et al. Unusually large plasma factor VIII: von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. N Engl J Med 1982;307:1432–5. doi: 10.1056/NEJM198212023072306. (PMID: 10.1056/NEJM198212023072306)
Dong JF, Moake JL, Nolasco L, Bernardo A, Arceneaux W, Shrimpton CN, et al. ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions. Blood 2002;100:4033–9. doi: 10.1182/blood-2002-05-1401. (PMID: 10.1182/blood-2002-05-1401)
Arya M, Anvari B, Romo GM, Cruz MA, Dong JF, McIntire LV, et al. Ultralarge multimers of von Willebrand factor form spontaneous high-strength bonds with the platelet glycoprotein Ib-IX complex: studies using optical tweezers. Blood 2002;99:3971–7. doi: 10.1182/blood-2001-11-0060. (PMID: 10.1182/blood-2001-11-0060)
Konstantopoulos K, Chow TW, Turner NA, Hellums JD, Moake JL. Shear stress-induced binding of von Willebrand factor to platelets. Biorheology 1997;34:57–71. doi: 10.1016/S0006-355X(97)00004-8. (PMID: 10.1016/S0006-355X(97)00004-8)
Moake JL, Turner NA, Stathopoulos NA, Nolasco LH, Hellums JD. Involvement of large plasma von Willebrand factor (vWF) multimers and unusually large vWF forms derived from endothelial cells in shear stress-induced platelet aggregation. J Clin Invest 1986;78:1456–61. doi: 10.1172/JCI112736. (PMID: 10.1172/JCI112736)
Cuker A, Cataland SR, Coppo P, de la Rubia J, Friedman KD, George JN, et al. Redefining outcomes in immune TTP: an international working group consensus report. Blood 2021;137:1855–61. doi: 10.1182/blood.2020009150. (PMID: 10.1182/blood.2020009150)
Zheng XL, Vesely SK, Cataland SR, Coppo P, Geldziler B, Iorio A, et al. ISTH guidelines for the diagnosis of thrombotic thrombocytopenic purpura. J Thromb Haemost 2020;18:2486–95. doi: 10.1111/jth.15006. (PMID: 10.1111/jth.15006)
Levy GG, Nichols WC, Lian EC, Foroud T, McClintick JN, McGee BM, et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 2001;413:488–94. doi: 10.1038/35097008. (PMID: 10.1038/35097008)
Tsai HM, Lian EC. Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. N Engl J Med 1998;339:1585–94. doi: 10.1056/NEJM199811263392203. (PMID: 10.1056/NEJM199811263392203)
Scully M, Yarranton H, Liesner R, Cavenagh J, Hunt B, Benjamin S, et al. Regional UK TTP registry: correlation with laboratory ADAMTS 13 analysis and clinical features. Br J Haematol 2008;142:819–26. doi: 10.1111/j.1365-2141.2008.07276.x. (PMID: 10.1111/j.1365-2141.2008.07276.x)
Mariotte E, Azoulay E, Galicier L, Rondeau E, Zouiti F, Boisseau P, et al. Epidemiology and pathophysiology of adulthood-onset thrombotic microangiopathy with severe ADAMTS13 deficiency (thrombotic thrombocytopenic purpura): a cross-sectional analysis of the French national registry for thrombotic microangiopathy. Lancet Haematol 2016;3:e237–45. doi: 10.1016/S2352-3026(16)30018-7. (PMID: 10.1016/S2352-3026(16)30018-7)
Sanchez-Luceros A, Meschengieser SS, Marchese C, Votta R, Casais P, Woods AI, et al. Factor VIII and von Willebrand factor changes during normal pregnancy and puerperium. Blood Coagul Fibrinolysis 2003;14:647–51. doi: 10.1097/00001721-200310000-00005. (PMID: 10.1097/00001721-200310000-00005)
Sanchez-Luceros A, Farias CE, Amaral MM, Kempfer AC, Votta R, Marchese C, et al. von Willebrand factor-cleaving protease (ADAMTS13) activity in normal non-pregnant women, pregnant and post-delivery women. Thromb Haemost 2004;92:1320–6. doi: 10.1160/TH03-11-0683. (PMID: 10.1160/TH03-11-0683)
Mannucci PM, Canciani MT, Forza I, Lussana F, LAttuAdA A, Rossi E, et al. Changes in health and disease of the metalloprotease that cleaves von Willebrand factor. Blood 2001;98:2730–5. doi: 10.1182/blood.v98.9.2730. (PMID: 10.1182/blood.v98.9.2730)
Ernst LM. Maternal vascular malperfusion of the placental bed. APMIS 2018;126:551–60. doi: 10.1111/apm.12833. (PMID: 10.1111/apm.12833)
George JN, Chen Q, Deford CC, Al-Nouri Z. Ten patient stories illustrating the extraordinarily diverse clinical features of patients with thrombotic thrombocytopenic purpura and severe ADAMTS13 deficiency. J Clin Apher 2012;27:302–11. doi: 10.1002/jca.21248. (PMID: 10.1002/jca.21248)
Grall M, Azoulay E, Galicier L, Provot F, Wynckel A, Poullin P, et al. Thrombotic thrombocytopenic purpura misdiagnosed as autoimmune cytopenia: causes of diagnostic errors and consequence on outcome. Experience of the French Thrombotic Microangiopathies Reference Centre. Am J Hematol 2017;92:381–7. doi: 10.1002/ajh.24665. (PMID: 10.1002/ajh.24665)
Sawler D, Parker A, Britto J, Goodyear MD, Sun HL. Time from suspected thrombotic thrombocytopenic purpura to initiation of plasma exchange and impact on survival: a 10-year provincial retrospective cohort study. Thromb Res 2020;193:53–9. doi: 10.1016/j.thromres.2020.05.045. (PMID: 10.1016/j.thromres.2020.05.045)
Bendapudi PK, Hurwitz S, Fry A, Marques MB, Waldo SW, Li A, et al. Derivation and external validation of the PLASMIC score for rapid assessment of adults with thrombotic microangiopathies: a cohort study. Lancet Haematol 2017;4:e157–64. doi: 10.1016/S2352-3026(17)30026-1. (PMID: 10.1016/S2352-3026(17)30026-1)
Coppo P, Schwarzinger M, Buffet M, Wynckel A, Clabault K, Presne C, et al. Predictive features of severe acquired ADAMTS13 deficiency in idiopathic thrombotic microangiopathies: the French TMA reference center experience. PLoS One 2010;5:e10208. doi: 10.1371/journal.pone.0010208. (PMID: 10.1371/journal.pone.0010208)
Berger BE. The alternative pathway of complement and the evolving clinical-pathophysiological spectrum of atypical hemolytic uremic syndrome. Am J Med Sci 2016;352:177–90. doi: 10.1016/j.amjms.2016.05.003. (PMID: 10.1016/j.amjms.2016.05.003)
Jokiranta TS. HUS and atypical HUS. Blood 2017;129:2847–56. doi: 10.1182/blood-2016-11-709865. (PMID: 10.1182/blood-2016-11-709865)
Bresin E, Rurali E, Caprioli J, Sanchez-Corral P, Fremeaux-Bacchi V, Rodriguez de Cordoba S, et al. Combined complement gene mutations in atypical hemolytic uremic syndrome influence clinical phenotype. J Am Soc Nephrol 2013;24:475–86. doi: 10.1681/ASN.2012090884. (PMID: 10.1681/ASN.2012090884)
Bu F, Maga T, Meyer NC, Wang K, Thomas CP, Nester CM, et al. Comprehensive genetic analysis of complement and coagulation genes in atypical hemolytic uremic syndrome. J Am Soc Nephrol 2014;25:55–64. doi: 10.1681/ASN.2013050453. (PMID: 10.1681/ASN.2013050453)
Noris M, Caprioli J, Bresin E, Mossali C, Pianetti G, Gamba S, et al. Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin J Am Soc Nephrol 2010;5:1844–59. doi: 10.2215/CJN.02210310. (PMID: 10.2215/CJN.02210310)
Delvaeye M, Noris M, De Vriese A, Esmon CT, Esmon NL, Ferrell G, et al. Thrombomodulin mutations in atypical hemolytic-uremic syndrome. N Engl J Med 2009;361:345–57. doi: 10.1056/NEJMoa0810739. (PMID: 10.1056/NEJMoa0810739)
Dragon-Durey MA, Loirat C, Cloarec S, Macher MA, Blouin J, Nivet H, et al. Anti-factor H autoantibodies associated with atypical hemolytic uremic syndrome. J Am Soc Nephrol 2005;16:555–63. doi: 10.1681/ASN.2004050380. (PMID: 10.1681/ASN.2004050380)
Jozsi M, Licht C, Strobel S, Zipfel SLH, Richter H, Heinen S, et al. Factor H autoantibodies in atypical hemolytic uremic syndrome correlate with CFHR1/CFHR3 deficiency. Blood 2008;111:1512–4. doi: 10.1182/blood-2007-09-109876. (PMID: 10.1182/blood-2007-09-109876)
Stahl AL, Vaziri-Sani F, Heinen S, Kristoffersson AC, Gydell KH, Raafat R, et al. Factor H dysfunction in patients with atypical hemolytic uremic syndrome contributes to complement deposition on platelets and their activation. Blood 2008;111:5307–15. doi: 10.1182/blood-2007-08-106153. (PMID: 10.1182/blood-2007-08-106153)
Sullivan M, Erlic Z, Hoffmann MM, Arbeiter K, Patzer L, Budde K, et al. Epidemiological approach to identifying genetic predispositions for atypical hemolytic uremic syndrome. Ann Hum Genet 2010;74:17–26. doi: 10.1111/j.1469-1809.2009.00554.x. (PMID: 10.1111/j.1469-1809.2009.00554.x)
Fakhouri F, Zuber J, Fremeaux-Bacchi V, Loirat C. Haemolytic uraemic syndrome. Lancet 2017;390:681–96. doi: 10.1016/S0140-6736(17)30062-4. (PMID: 10.1016/S0140-6736(17)30062-4)
Noris M, Remuzzi G. Atypical hemolytic-uremic syndrome. N Engl J Med 2009;361:1676–87. doi: 10.1056/NEJMra0902814. (PMID: 10.1056/NEJMra0902814)
Bayer G, von Tokarski F, Thoreau B, Bauvois A, Barbet C, Cloarec S, et al. Etiology and outcomes of thrombotic microangiopathies. Clin J Am Soc Nephrol 2019;14:557–66. doi: 10.2215/CJN.11470918. (PMID: 10.2215/CJN.11470918)
Bruel A, Kavanagh D, Noris M, Delmas Y, Wong EKS, Bresin E, et al. Hemolytic uremic syndrome in pregnancy and postpartum. Clin J Am Soc Nephrol 2017;12:1237–47. doi: 10.2215/CJN.00280117. (PMID: 10.2215/CJN.00280117)
Huerta A, Arjona E, Portoles J, Lopez-Sanchez P, Rabasco C, Espinosa M, et al. A retrospective study of pregnancy-associated atypical hemolytic uremic syndrome. Kidney Int 2018;93:450–9. doi: 10.1016/j.kint.2017.06.022. (PMID: 10.1016/j.kint.2017.06.022)
Fakhouri F, Roumenina L, Provot F, Sallee M, Caillard S, Couzi L, et al. Pregnancy-associated hemolytic uremic syndrome revisited in the era of complement gene mutations. J Am Soc Nephrol 2010;21:859–67. doi: 10.1681/ASN.2009070706. (PMID: 10.1681/ASN.2009070706)
Miyakis S, Lockshin MD, Atsumi T, Branch DW, Brey RL, Cervera R, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost 2006;4:295–306. doi: 10.1111/j.1538-7836.2006.01753.x. (PMID: 10.1111/j.1538-7836.2006.01753.x)
Cervera R, Rodriguez-Pinto I, Legault K, Erkan D. 16th International Congress on Antiphospholipid Antibodies Task Force report on catastrophic antiphospholipid syndrome. Lupus 2020;29:1594–600. doi: 10.1177/0961203320951260. (PMID: 10.1177/0961203320951260)
Ghandi AA, Estes SK, Rysenga CE, Knight JS. Understanding the pathophysiology of thrombotic APA through animal models. Int J Mol Sci 2021;22:2588.
Chaturvedi S, Braunstein EM, Brodsky RA. Antiphospholipid syndrome: complement activation, complement gene mutations, and therapeutic implications. J Thromb Haemost 2021;19:607–16. doi: 10.1111/jth.15082. (PMID: 10.1111/jth.15082)
de Groot PG, Urbanus RT. Antiphospholipid syndrome--not a noninflammatory disease. Semin Thromb Hemost 2015;41:607–14. doi: 10.1055/s-0035-1556725. (PMID: 10.1055/s-0035-1556725)
Salmon JE, Girardi G, Lockshin MD. The antiphospholipid syndrome as a disorder initiated by inflammation: implications for the therapy of pregnant patients. Nat Clin Pract Rheumatol 2007;3:140–7. doi: 10.1038/ncprheum0432. (PMID: 10.1038/ncprheum0432)
Chaturvedi S, Braunstein EM, Yuan X, Yu J, Alexander A, Chen H, et al. Complement activity and complement regulatory gene mutations are associated with thrombosis in APS and CAPS. Blood 2020;135:239–51. doi: 10.1182/blood.2019003863. (PMID: 10.1182/blood.2019003863)
Ruffatti A, Tonello M, Macor P, Calligaro A, Del Ross T, Favaro M, et al. Markers of complement activation in plasma during quiescent phases in patients with catastrophic antiphospholipid syndrome. Blood 2021;137:2989–92. doi: 10.1182/blood.2020010575. (PMID: 10.1182/blood.2020010575)
Tumian NR, Hunt BJ. Clinical management of thrombotic antiphospholipid syndrome. J Clin Med 2022;11:735. doi: 10.3390/jcm11030735. (PMID: 10.3390/jcm11030735)
Dabit JY, Valenzuela-Almada MO, Vallejo-Ramos S, Duarte-Garcia A. Epidemiology of antiphospholipid syndrome in the general population. Curr Rheumatol Rep 2022;23:85. doi: 10.1007/s11926-021-01038-2. (PMID: 10.1007/s11926-021-01038-2)
Cervera R, Serrano R, Pons-Estel GJ, Ceberio-Hualde L, Shoenfeld Y, de Ramon E, et al. Morbidity and mortality in the antiphospholipid syndrome during a 10-year period: a multicentre prospective study of 1000 patients. Ann Rheum Dis 2015;74:1011–8. doi: 10.1136/annrheumdis-2013-204838. (PMID: 10.1136/annrheumdis-2013-204838)
Asherson RA, Cervera R, de Groot PG, Erkan D, Boffa MC, Piette JC, et al. Catastrophic antiphospholipid syndrome: international consensus statement on classification criteria and treatment guidelines. Lupus 2003;12:530–4. doi: 10.1191/0961203303lu394oa. (PMID: 10.1191/0961203303lu394oa)
Collict M, Sciberras Buhagiar W, Mercieca C, Thake J. Catastrophic antiphospholipid syndrome in pregnancy: a life-threatening condition. BMJ Case Rep 2019;12:e230863. doi: 10.1136/bcr-2019-230863. (PMID: 10.1136/bcr-2019-230863)
Kozlovskaya NL, Korotchaeva YV, Bobrova LA. Adverse outcomes in obstetric-atypical haemolytic uraemic syndrome: a case series analysis. J Matern Fetal Neonatal Med 2019;32:2853–9. doi: 10.1080/14767058.2018.1450381. (PMID: 10.1080/14767058.2018.1450381)
Pourrat O, Coudroy R, Pierre F. ADAMTS13 deficiency in severe postpartum HELLP syndrome. Br J Haematol 2013;163:409–10. doi: 10.1111/bjh.12494. (PMID: 10.1111/bjh.12494)
Servais A, Devillard N, Fremeaux-Bacchi V, Hummel A, Salomon L, Contin-Bordes C, et al. Atypical haemolytic uraemic syndrome and pregnancy: outcome with ongoing eculizumab. Nephrol Dial Transpl 2016;31:2122–30. doi: 10.1093/ndt/gfw314. (PMID: 10.1093/ndt/gfw314)
Jiang Y, McIntosh JJ, Reese JA, Deford CC, Kremer Hovinga JA, Lammle B, et al. Pregnancy outcomes following recovery from acquired thrombotic thrombocytopenic purpura. Blood 2014;123:1674–80. doi: 10.1182/blood-2013-11-538900. (PMID: 10.1182/blood-2013-11-538900)
Gaggl M, Aigner C, Csuka D, Szilagyi A, Prohaszka Z, Kain R, et al. Maternal and fetal outcomes of pregnancies in women with atypical hemolytic uremic syndrome. J Am Soc Nephrol 2018;29:1020–9. doi: 10.1681/ASN.2016090995. (PMID: 10.1681/ASN.2016090995)
Scully M, Thomas M, Underwood M, Watson H, Langley K, Camilleri RS, et al. Thrombotic thrombocytopenic purpura and pregnancy: presentation, management, and subsequent pregnancy outcomes. Blood 2014;124:211–9. doi: 10.1182/blood-2014-02-553131. (PMID: 10.1182/blood-2014-02-553131)
Burwick RM, Moyle K, Java A, Gupta M. Differentiating hemolysis, elevated liver enzymes, and low platelet count syndrome and atypical hemolytic uremic syndrome in the postpartum period. Hypertension 2021;78:760–8. doi: 10.1161/HYPERTENSIONAHA.121.17311. (PMID: 10.1161/HYPERTENSIONAHA.121.17311)
Fakhouri F, Scully M, Provot F, Blasco M, Coppo P, Noris M, et al. Management of thrombotic microangiopathy in pregnancy and postpartum: report from an international working group. Blood 2020;136:2103–17. doi: 10.1182/blood.2020005221. (PMID: 10.1182/blood.2020005221)
Chau K, Hennessy A, Makris A, Hennessy A, Makris A. Placental growth factor and pre-eclampsia. J Hum Hypertens 2017;31:782–6. doi: 10.1038/jhh.2017.61. (PMID: 10.1038/jhh.2017.61)
McLaughlin K, Snelgrove JW, Audette MC, Syed A, Hobson SR, Windrim RC, et al. PlGF (placental growth factor) testing in clinical practice: evidence from a Canadian tertiary maternity referral center. Hypertension 2021;77:2057–65. doi: 10.1161/HYPERTENSIONAHA.121.17047. (PMID: 10.1161/HYPERTENSIONAHA.121.17047)
Levine RJ, Lam C, Qian C, Yu KF, Maynard SE, Sachs BP, et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med 2006;355:992–1005. doi: 10.1056/NEJMoa055352. (PMID: 10.1056/NEJMoa055352)
Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 2003;111:649–58. doi: 10.1172/JCI17189. (PMID: 10.1172/JCI17189)
Zeisler H, Llurba E, Chantraine F, Vatish M, Staff AC, Sennstrom M, et al. Predictive value of the sFlt-1: PlGF ratio in women with suspected preeclampsia. N Engl J Med 2016;374:13–22. doi: 10.1056/NEJMoa1414838. (PMID: 10.1056/NEJMoa1414838)
Duhig KE, Seed PT, Myers JE, Bahl R, Bambridge G, Barnfield S, et al. Placental growth factor testing for suspected pre-eclampsia: a cost-effectiveness analysis. BJOG 2019;126:1390–8. doi: 10.1111/1471-0528.15855. (PMID: 10.1111/1471-0528.15855)
Schnettler WT, Dukhovny D, Wenger J, Salahuddin S, Ralston SJ, Rana S. Cost and resource implications with serum angiogenic factor estimation in the triage of pre-eclampsia. BJOG 2013;120:1224–32. doi: 10.1111/1471-0528.12259. (PMID: 10.1111/1471-0528.12259)
National Institute for Health and Care Excellence. PlGF-based testing to help diagnose suspected pre-eclampsia (Triage PlGF test, Elecsys immunoassay sFlt-1/PlGF ratio, DELFIA Xpress PlGF 1-2-3 test, and BRAHMS sFlt-1 Kryptor/BRAHMS PlGF plus Kryptor PE ratio). Accessed July 15, 2022. https://www.nice.org.uk/guidance/dg23.
Zheng XL, Vesely SK, Cataland SR, Coppo P, Geldziler B, Iorio A, et al. Good practice statements (GPS) for the clinical care of patients with thrombotic thrombocytopenic purpura. J Thromb Haemost 2020;18:2503–12. doi: 10.1111/jth.15009. (PMID: 10.1111/jth.15009)
Rock GA, Shumak KH, Buskard NA, Blanchette VS, Kelton JG, Nair RC, et al. Comparison of plasma exchange with plasma infusion in the treatment of thrombotic thrombocytopenic purpura. Canadian Apheresis Study Group. N Engl J Med 1991;325:393–7. doi: 10.1056/NEJM199108083250604. (PMID: 10.1056/NEJM199108083250604)
Ferrari B, Peyvandi F. How I treat thrombotic thrombocytopenic purpura in pregnancy. Blood 2020;136:2125–32. doi: 10.1182/blood.2019000962. (PMID: 10.1182/blood.2019000962)
Definition of term pregnancy. Committee Opinion No. 579. American College of Obstetricians and Gynecologists. Obstet Gynecol 2013;122:1139–40. doi: 10.1097/01.AOG.0000437385.88715.4a. (PMID: 10.1097/01.AOG.0000437385.88715.4a)
Goel R, Ness PM, Takemoto CM, Krishnamurti L, King KE, Tobian AAR. Platelet transfusions in platelet consumptive disorders are associated with arterial thrombosis and in-hospital mortality. Blood 2015;125:1470–6. doi: 10.1182/blood-2014-10-605493. (PMID: 10.1182/blood-2014-10-605493)
Riviere E, Saint-Leger M, James C, Delmas Y, Clouzeau B, Bui N, et al. Platelet transfusion and catheter insertion for plasma exchange in patients with thrombotic thrombocytopenic purpura and a low platelet count. Transfusion 2015;55:1798–802. doi: 10.1111/trf.13041. (PMID: 10.1111/trf.13041)
Zheng XL, Vesely SK, Cataland SR, Coppo P, Geldziler B, Iorio A, et al. ISTH guidelines for treatment of thrombotic thrombocytopenic purpura. J Thromb Haemost 2020;18:2496–502. doi: 10.1111/jth.15010. (PMID: 10.1111/jth.15010)
Scully M, Cataland S, Coppo P, de la Rubia J, Friedman KD, Kremer Hovinga J, et al. Consensus on the standardization of terminology in thrombotic thrombocytopenic purpura and related thrombotic microangiopathies. J Thromb Haemost 2017;15:312–22. doi: 10.1111/jth.13571. (PMID: 10.1111/jth.13571)
Colquhoun M, Thanopoulou V, Quick V, Mouyis M. Rituximab administration during the second trimester of pregnancy for systemic lupus erythematosus: case report and review of the literature on rheumatic disease. Mod Rheumatol Case Rep 2022;6:173–7. doi: 10.1093/mrcr/rxab051. (PMID: 10.1093/mrcr/rxab051)
Scully M, Starke R, Lee R, Mackie I, Machin S, Cohen H. Successful management of pregnancy in women with a history of thrombotic thrombocytopaenic purpura. Blood Coagul Fibrinolysis 2006;17:459–63. doi: 10.1097/01.mbc.0000240918.65306.20. (PMID: 10.1097/01.mbc.0000240918.65306.20)
Chakravarty EF, Murray ER, Kelman A, Farmer P. Pregnancy outcomes after maternal exposure to rituximab. Blood 2011;117:1499–506. doi: 10.1182/blood-2010-07-295444. (PMID: 10.1182/blood-2010-07-295444)
Kuhne L, Volker LA, Hagmann H, Hagele H, Osterholt T, Eichenauer DA, et al. First use of the anti-VWF nanobody caplacizumab to treat iTTP in pregnancy. Br J Haematol 2022;196:e30–3. doi: 10.1111/bjh.17833. (PMID: 10.1111/bjh.17833)
Dao KH, Bermas BL. Systemic lupus erythematosus management in pregnancy. Int J Womens Health 2022;14:199–211. doi: 10.2147/IJWH.S282604. (PMID: 10.2147/IJWH.S282604)
Callewaert F, Roodt J, Ulrichts H, Stohr T, van Rensburg WJ, Lamprecht S, et al. Evaluation of efficacy and safety of the anti-VWF Nanobody ALX-0681 in a preclinical baboon model of acquired thrombotic thrombocytopenic purpura. Blood 2012;120:3603–10. doi: 10.1182/blood-2012-04-420943. (PMID: 10.1182/blood-2012-04-420943)
Scully M, Cataland SR, Peyvandi F, Coppo P, Knobl P, Kremer Hovinga JA, et al. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. N Engl J Med 2019;380:335–46. doi: 10.1056/NEJMoa1806311. (PMID: 10.1056/NEJMoa1806311)
Coppo P, Bubenheim M, Azoulay E, Galicier L, Malot S, Bige N, et al. A regimen with caplacizumab, immunosuppression, and plasma exchange prevents unfavorable outcomes in immune-mediated TTP. Blood 2021;137:733–42. doi: 10.1182/blood.2020008021. (PMID: 10.1182/blood.2020008021)
Dutt T, Shaw RJ, Stubbs MJ, Yong J, Bailiff B, Cranfield T, et al. Real-world experience with caplacizumab in the management of acute TTP. Blood 2021;137:1731–40. doi: 10.1182/blood.2020007599. (PMID: 10.1182/blood.2020007599)
Allford SL, Harrison P, Lawrie AS, Liesner R, MacKie IJ, Machin SJ. Von Willebrand factor-cleaving protease activity in congenital thrombotic thrombocytopenic purpura. Br J Haematol 2000;111:1215–22. doi: 10.1046/j.1365-2141.2000.02503.x. (PMID: 10.1046/j.1365-2141.2000.02503.x)
Scully M, Gattens M, Khair K, Liesner R. The use of intermediate purity factor VIII concentrate BPL 8Y as prophylaxis and treatment in congenital thrombotic thrombocytopenic purpura. Br J Haematol 2006;135:101–4. doi: 10.1111/j.1365-2141.2006.06264.x. (PMID: 10.1111/j.1365-2141.2006.06264.x)
Pandey S, Vyas GN. Adverse effects of plasma transfusion. Transfusion 2012;52(suppl 1):65–79S. doi: 10.1111/j.1537-2995.2012.03663.x. (PMID: 10.1111/j.1537-2995.2012.03663.x)
Peyvandi F, Mannucci PM, Valsecchi C, Pontiggia S, Farina C, Retzios AD. ADAMTS13 content in plasma-derived factor VIII/von Willebrand factor concentrates. Am J Hematol 2013;88:895–8. doi: 10.1002/ajh.23527. (PMID: 10.1002/ajh.23527)
Scully M, Knobl P, Kentouche K, Rice L, Windyga J, Schneppenheim R, et al. Recombinant ADAMTS-13: first-in-human pharmacokinetics and safety in congenital thrombotic thrombocytopenic purpura. Blood 2017;130:2055–63. doi: 10.1182/blood-2017-06-788026. (PMID: 10.1182/blood-2017-06-788026)
Fox LC, Cohney SJ, Kausman JY, Shortt J, Hughes PD, Wood EM, et al. Consensus opinion on diagnosis and management of thrombotic microangiopathy in Australia and New Zealand. Intern Med J 2018;48:624–36. doi: 10.1111/imj.13804. (PMID: 10.1111/imj.13804)
Scully M, Hunt BJ, Benjamin S, Liesner R, Rose P, Peyvandi F, et al. Guidelines on the diagnosis and management of thrombotic thrombocytopenic purpura and other thrombotic microangiopathies. Br J Haematol 2012;158:323–35. doi: 10.1111/j.1365-2141.2012.09167.x. (PMID: 10.1111/j.1365-2141.2012.09167.x)
Blombery P, Scully M. Management of thrombotic thrombocytopenic purpura: current perspectives. J Blood Med 2014;5:15–23. doi: 10.2147/JBM.S46458. (PMID: 10.2147/JBM.S46458)
Bobbio-Pallavicini E, Gugliotta L, Centurioni R, Porta C, Vianelli N, Billio A, et al. Antiplatelet agents in thrombotic thrombocytopenic purpura (TTP). Results of a randomized multicenter trial by the Italian Cooperative Group for TTP. Haematologica 1997;82:429–35.
Yarranton H, Cohen H, Pavord SR, Benjamin S, Hagger D, Machin SJ. Venous thromboembolism associated with the management of acute thrombotic thrombocytopenic purpura. Br J Haematol 2003;121:778–85. doi: 10.1046/j.1365-2141.2003.04360.x. (PMID: 10.1046/j.1365-2141.2003.04360.x)
Neave L, Scully M. Microangiopathic hemolytic anemia in pregnancy. Transfus Med Rev 2018;32:230–6. doi: 10.1016/j.tmrv.2018.08.002. (PMID: 10.1016/j.tmrv.2018.08.002)
Thomas MR, Robinson S, Scully MA. How we manage thrombotic microangiopathies in pregnancy. Br J Haematol 2016;173:821–30. doi: 10.1111/bjh.14045. (PMID: 10.1111/bjh.14045)
Sakai K, Fujimura Y, Nagata Y, Higasa S, Moriyama M, Isonishi A, et al. Success and limitations of plasma treatment in pregnant women with congenital thrombotic thrombocytopenic purpura. J Thromb Haemost 2020;18:2929–41. doi: 10.1111/jth.15064. (PMID: 10.1111/jth.15064)
Scully M. How to evaluate and treat the spectrum of TMA syndromes in pregnancy. Hematol Am Soc Hematol Educ Program 2021;2021:545–51. doi: 10.1182/hematology.2021000290. (PMID: 10.1182/hematology.2021000290)
Epperla N, Hemauer K, Friedman KD, George JN, Foy P. Congenital thrombotic thrombocytopenic purpura related to a novel mutation in ADAMTS13 gene and management during pregnancy. Am J Hematol 2016;91:644–6. doi: 10.1002/ajh.24311. (PMID: 10.1002/ajh.24311)
American College of Obstetricians and Gynecologists. Low-dose aspirin use for the prevention of preeclampsia and related morbidity and mortality. Practice advisory. Accessed August 1, 2022. https://www.acog.org/clinical/clinical-guidance/practice-advisory/articles/2021/12/low-dose-aspirin-use-for-the-prevention-of-preeclampsia-and-related-morbidity-and-mortality.
Henderson JT, Vesco KK, Senger CA, Thomas RG, Redmond N. Aspirin use to prevent preeclampsia and related morbidity and mortality: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA 2021;326:1192–206. doi: 10.1001/jama.2021.8551. (PMID: 10.1001/jama.2021.8551)
Thromboembolism in pregnancy. ACOG Practice Bulletin No. 196 [published erratum appears in Obstet Gynecol 2018;132:1068]. American College of Obstetricians and Gynecologists. Obstet Gynecol 2018;132:e1–17. doi: 10.1097/AOG.0000000000002923. (PMID: 10.1097/AOG.0000000000002923)
Legendre CM, Licht C, Muus P, Greenbaum LA, Babu S, Bedrosian C, et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N Engl J Med 2013;368:2169–81. doi: 10.1056/NEJMoa1208981. (PMID: 10.1056/NEJMoa1208981)
Fakhouri F, Scully M, Ardissino G, Al-Dakkak I, Miller B, Rondeau E. Pregnancy-triggered atypical hemolytic uremic syndrome (aHUS): a Global aHUS Registry analysis. J Nephrol 2021;34:1581–90. doi: 10.1007/s40620-021-01025-x. (PMID: 10.1007/s40620-021-01025-x)
Kelly RJ, Hochsmann B, Szer J, Kulasekararaj A, de Guibert S, Roth A, et al. Eculizumab in pregnant patients with paroxysmal nocturnal hemoglobinuria. N Engl J Med 2015;373:1032–9. doi: 10.1056/NEJMoa1502950. (PMID: 10.1056/NEJMoa1502950)
Miyasaka N, Miura O, Kawaguchi T, Arima N, Morishita E, Usuki K, et al. Pregnancy outcomes of patients with paroxysmal nocturnal hemoglobinuria treated with eculizumab: a Japanese experience and updated review. Int J Hematol 2016;103:703–12. doi: 10.1007/s12185-016-1946-x. (PMID: 10.1007/s12185-016-1946-x)
Duineveld C, Wijnsma KL, Volokhina EB, van den Heuvel LPB, van de Kar NCAJ, Wetzels JFM. Placental passage of eculizumab and complement blockade in a newborn. Kidney Int 2019;95:996. doi: 10.1016/j.kint.2019.01.012. (PMID: 10.1016/j.kint.2019.01.012)
Haninger-Vacariu N, Aigner C, Kain R, Prohaszka Z, Gaggl M, Bohmig GA, et al. Successful pregnancies during ongoing eculizumab therapy in two patients with complement-mediated thrombotic microangiopathy. Kidney Med 2020;2:213–7. doi: 10.1016/j.xkme.2019.12.004. (PMID: 10.1016/j.xkme.2019.12.004)
Willrich MAV, Andreguetto BD, Sridharan M, Fervenza FC, Tostrud LJ, Ladwig PM, et al. The impact of eculizumab on routine complement assays. J Immunol Methods 2018;460:63–71. doi: 10.1016/j.jim.2018.06.010. (PMID: 10.1016/j.jim.2018.06.010)
Chaturvedi S, Dhaliwal N, Hussain S, Dane K, Upreti H, Braunstein EM, et al. Outcomes of a clinician-directed protocol for discontinuation of complement inhibition therapy in atypical hemolytic uremic syndrome. Blood Adv 2021;5:1504–12. doi: 10.1182/bloodadvances.2020003175. (PMID: 10.1182/bloodadvances.2020003175)
Fakhouri F, Fila M, Hummel A, Ribes D, Sellier-Leclerc AL, Ville S, et al. Eculizumab discontinuation in children and adults with atypical hemolytic-uremic syndrome: a prospective multicenter study. Blood 2021;137:2438–49. doi: 10.1182/blood.2020009280. (PMID: 10.1182/blood.2020009280)
Acosta-Medina AA, Moyer AM, Go RS, Willrich MAV, Fervenza FC, Leung N, et al. Complement gene variant effect on relapse of complement-mediated thrombotic microangiopathy after eculizumab cessation. Blood Adv 2022 May 9 [epub ahead of print]. doi: 10.1182/bloodadvances.2021006416.
Rondeau E, Scully M, Ariceta G, Barbour T, Cataland S, Heyne N, et al. The long-acting C5 inhibitor, Ravulizumab, is effective and safe in adult patients with atypical hemolytic uremic syndrome naive to complement inhibitor treatment. Kidney Int 2020;97:1287–96. doi: 10.1016/j.kint.2020.01.035. (PMID: 10.1016/j.kint.2020.01.035)
Gackler A, Schonermarck U, Dobronravov V, La Manna G, Denker A, Liu P, et al. Efficacy and safety of the long-acting C5 inhibitor ravulizumab in patients with atypical hemolytic uremic syndrome triggered by pregnancy: a subgroup analysis. BMC Nephrol 2021;22:5. doi: 10.1186/s12882-020-02190-0. (PMID: 10.1186/s12882-020-02190-0)
McNamara LA, Topaz N, Wang X, Hariri S, Fox L, MacNeil JR. High risk for invasive meningococcal disease among patients receiving eculizumab (soliris) despite receipt of meningococcal vaccine. MMWR Morb Mortal Wkly Rep 2017;66:734–7. doi: 10.15585/mmwr.mm6627e1. (PMID: 10.15585/mmwr.mm6627e1)
Timmermans SAMEG, Werion A, Spaanderman MEA, Reutelingsperger CP, Damoiseaux JGMC, Morelle J, et al. The natural course of pregnancies in women with primary atypical haemolytic uraemic syndrome and asymptomatic relatives. Br J Haematol 2020;190:442–9. doi: 10.1111/bjh.16626. (PMID: 10.1111/bjh.16626)
Gupta M, Govindappagari S, Burwick RM. Pregnancy-associated atypical hemolytic uremic syndrome: a systematic review. Obstet Gynecol 2020;135:46–58. doi: 10.1097/AOG.0000000000003554. (PMID: 10.1097/AOG.0000000000003554)
Hui D, Hladunewich MA. Chronic kidney disease and pregnancy. Obstet Gynecol 2019;133:1182–94. doi: 10.1097/AOG.0000000000003256. (PMID: 10.1097/AOG.0000000000003256)
Sammaritano LR, Bermas BL, Chakravarty EE, Chambers C, Clowse MEB, Lockshin MD, et al. 2020 American College of Rheumatology guideline for the management of reproductive health in rheumatic and musculoskeletal diseases. Arthritis Rheumatol 20202020;72:529–56. doi: 10.1002/art.41191. (PMID: 10.1002/art.41191)
Tektonidou MG, Andreoli L, Limper M, Amoura Z, Cervera R, Costedoat-Chalumeau N, et al. EULAR recommendations for the management of antiphospholipid syndrome in adults. Ann Rheum Dis 2019;78:1296–304. doi: 10.1136/annrheumdis-2019-215213. (PMID: 10.1136/annrheumdis-2019-215213)
Erkan D. Expert perspective: management of microvascular and catastrophic antiphospholipid syndrome. Arthritis Rheumatol 2021;73:1780–90. doi: 10.1002/art.41891. (PMID: 10.1002/art.41891)
Legault K, Schunemann H, Hillis C, Yeung C, Akl EA, Carrier M, et al. McMaster RARE-Bestpractices clinical practice guideline on diagnosis and management of the catastrophic antiphospholipid syndrome. J Thromb Haemost 2018. doi: 10.1111/jth.14192. (PMID: 10.1111/jth.14192)
Barratt-Due A, Floisand Y, Orrem HL, Kvam AK, Holme PA, Bergseth G, et al. Complement activation is a crucial pathogenic factor in catastrophic antiphospholipid syndrome. Rheumatology (Oxford) 2016;55:1337–9. doi: 10.1093/rheumatology/kew040. (PMID: 10.1093/rheumatology/kew040)
Lonze BE, Zachary AA, Magro CM, Desai NM, Orandi BJ, Dagher NN, et al. Eculizumab prevents recurrent antiphospholipid antibody syndrome and enables successful renal transplantation. Am J Transpl 2014;14:459–65. doi: 10.1111/ajt.12540. (PMID: 10.1111/ajt.12540)
Rovere-Querini P, Canti V, Erra R, Bianchi E, Slaviero G, D'Angelo A, et al. Eculizumab in a pregnant patient with laboratory onset of catastrophic antiphospholipid syndrome: a case report. Medicine (Baltimore) 2018;97:e12584. doi: 10.1097/MD.0000000000012584. (PMID: 10.1097/MD.0000000000012584)
Mar N, Kosowicz R, Hook K. Recurrent thrombosis prevention with intravenous immunoglobulin and hydroxychloroquine during pregnancy in a patient with history of catastrophic antiphospholipid syndrome and pregnancy loss. J Thromb Thrombolysis 2014;38:196–200. doi: 10.1007/s11239-014-1061-x. (PMID: 10.1007/s11239-014-1061-x)
Cines DB, Levine LD. Thrombocytopenia in pregnancy. Hematol Am Soc Hematol Educ Program 2017;2017:144–51. doi: 10.1182/asheducation-2017.1.144. (PMID: 10.1182/asheducation-2017.1.144)
تواريخ الأحداث: Date Created: 20221201 Date Completed: 20230130 Latest Revision: 20230204
رمز التحديث: 20230205
DOI: 10.1097/AOG.0000000000005024
PMID: 36455925
قاعدة البيانات: MEDLINE
الوصف
تدمد:1873-233X
DOI:10.1097/AOG.0000000000005024