دورية أكاديمية

Bioprospecting the American Alligator Peptidome for antiviral peptides against Venezuelan equine encephalitis virus.

التفاصيل البيبلوغرافية
العنوان: Bioprospecting the American Alligator Peptidome for antiviral peptides against Venezuelan equine encephalitis virus.
المؤلفون: Carfagno A; Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, USA., Lin SC; School of Systems Biology, George Mason University, Manassas, Virginia, USA.; National Taiwan Ocean University, Keelung City, Taiwan., Chafran L; Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, USA., Akhrymuk I; Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA., Callahan V; School of Systems Biology, George Mason University, Manassas, Virginia, USA., Po M; Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, USA., Zhu Y; Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, USA., Altalhi A; Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, USA., Durkin DP; Chemistry Department, U.S. Naval Academy, Annapolis, Maryland, USA., Russo P; Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA., Vliet KA; Department of Biology, University of Florida, Gainesville, Florida, USA., Webb-Robertson BJ; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA., Kehn-Hall K; Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA., Bishop B; Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, USA.
المصدر: Proteomics [Proteomics] 2023 Mar; Vol. 23 (5), pp. e2200237. Date of Electronic Publication: 2023 Jan 03.
نوع المنشور: Journal Article; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 101092707 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1615-9861 (Electronic) Linking ISSN: 16159853 NLM ISO Abbreviation: Proteomics Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Weinheim, Germany : Wiley-VCH,
مواضيع طبية MeSH: Encephalitis Virus, Venezuelan Equine*/physiology , Encephalomyelitis, Venezuelan Equine*/drug therapy , Encephalomyelitis, Venezuelan Equine*/prevention & control , Alligators and Crocodiles*, Animals ; Horses ; Antiviral Agents/pharmacology ; Antiviral Agents/therapeutic use ; Bioprospecting ; Virus Replication ; Peptides
مستخلص: The innate immune protection provided by cationic antimicrobial peptides (CAMPs) has been shown to extend to antiviral activity, with putative mechanisms of action including direct interaction with host cells or pathogen membranes. The lack of therapeutics available for the treatment of viruses such as Venezuelan equine encephalitis virus (VEEV) underscores the urgency of novel strategies for antiviral discovery. American alligator plasma has been shown to exhibit strong in vitro antibacterial activity, and functionalized hydrogel particles have been successfully employed for the identification of specific CAMPs from alligator plasma. Here, a novel bait strategy in which particles were encapsulated in membranes from either healthy or VEEV-infected cells was implemented to identify peptides preferentially targeting infected cells for subsequent evaluation of antiviral activity. Statistical analysis of peptide identification results was used to select five candidate peptides for testing, of which one exhibited a dose-dependent inhibition of VEEV and also significantly inhibited infectious titers. Results suggest our bioprospecting strategy provides a versatile platform that may be adapted for antiviral peptide identification from complex biological samples.
(© 2023 Wiley-VCH GmbH.)
References: Bishop, B. M., Juba, M. L., Devine, M. C., Barksdale, S. M., Rodriguez, C. A., Chung, M. C., Russo, P. S., Vliet, K. A., Schnur, J. M., & van Hoek, M. L. (2015). Bioprospecting the American Alligator (Alligator mississippiensis) host defense peptidome. PLoS ONE, 10(2), e0117394. https://doi.org/10.1371/journal.pone.0117394.
Barksdale, S. M., Hrifko, E. J., & van Hoek, M. L. (2017). Cathelicidin antimicrobial peptide from Alligator mississippiensis has antibacterial activity against multi-drug resistant Acinetobacter baumanii and Klebsiella pneumoniae. Developmental & Comparative Immunology, 70, 135-144. https://doi.org/10.1016/j.dci.2017.01.011.
Dean, S. N., Bishop, B. M., & Van Hoek, M. L. (2011). Natural and synthetic cathelicidin peptides with anti-microbial and anti-biofilm activity against Staphylococcus aureus. BMC Microbiology, 11(1), 114. https://doi.org/10.1186/1471-2180-11-114.
Hollmann, A., Martínez, M., Noguera, M. E., Augusto, M. T., Disalvo, A., Santos, N. C., Semorile, L., & Maffía, P. C. (2016). Role of amphipathicity and hydrophobicity in the balance between hemolysis and peptide-membrane interactions of three related antimicrobial peptides. Colloids and Surfaces B: Biointerfaces, 141, 528-536. https://doi.org/10.1016/j.colsurfb.2016.02.003.
Zhang, L., Rozek, A., & Hancock, R. E. W. (2001). Interaction of cationic antimicrobial peptides with model membranes. Journal of Biological Chemistry, 276(38), 35714-35722. https://doi.org/10.1074/jbc.M104925200.
Thomas, S., Karnik, S., Barai, R. S., Jayaraman, V. K., & Idicula-Thomas, S. (2010). CAMP: A useful resource for research on antimicrobial peptides. Nucleic Acids Research, 38(Database issue), D774-D780. https://doi.org/10.1093/nar/gkp1021.
Wilson, S. S., Wiens, M. E., Holly, M. K., & Smith, J. G. (2016). Defensins at the mucosal surface: Latest insights into defensin-virus interactions. Journal of Virology, 90(11), 5216-5218. https://doi.org/10.1128/JVI.00904-15.
Xu, D., & Lu, W. (2020). Defensins: A double-edged sword in host immunity. Frontiers in Immunology, 11, 764.
Kehn-Hall, K., & Bradfute, S. B. (2022). Understanding host responses to equine encephalitis virus infection: Implications for therapeutic development. Expert Review of Anti-infective Therapy, 20(12), 1551-1566. https://doi.org/10.1080/14787210.2022.2141224.
Lundberg, L., Carey, B., & Kehn-Hall, K. (2017). Venezuelan equine encephalitis virus capsid-The clever caper. Viruses, 9(10), 279. https://doi.org/10.3390/v9100279.
Jonsson, C. B., Cao, X., Lee, J., Gabbard, J. D., Chu, Y.-K., Fitzpatrick, E. A., Julander, J., Chung, D.-H., Stabenow, J., & Golden, J. E. (2019). Efficacy of a ML336 derivative against Venezuelan and eastern equine encephalitis viruses. Antiviral Research, 167, 25-34. https://doi.org/10.1016/j.antiviral.2019.04.004.
Bishop, B. M., Juba, M. L., Russo, P. S., Devine, M., Barksdale, S. M., Scott, S., Settlage, R., Michalak, P., Gupta, K., Vliet, K., Schnur, J. M., & van Hoek, M. L. (2017). Discovery of novel antimicrobial peptides from Varanus komodoensis (Komodo Dragon) by large-scale analyses and de-novo-assisted sequencing using electron-transfer dissociation mass spectrometry. Journal of Proteome Research, 16(4), 1470-1482. https://doi.org/10.1021/acs.jproteome.6b00857.
Sherwood, J., Sowell, J., Beyer, N., Irvin, J., Stephen, C., Antone, A. J., Bao, Y., & Ciesla, L. M. (2019). Cell-membrane coated iron oxide nanoparticles for isolation and specific identification of drug leads from complex matrices. Nanoscale, 11(13), 6352-6359. https://doi.org/10.1039/C9NR01292C.
de la Fuente, C., Pinkham, C., Dabbagh, D., Beitzel, B., Garrison, A., Palacios, G., Hodge, K. A., Petricoin, E. F., Schmaljohn, C., Campbell, C. E., Narayanan, A., & Kehn-Hall, K. (2018). Phosphoproteomic analysis reveals Smad protein family activation following Rift Valley fever virus infection. PLoS ONE, 13(2), e0191983. https://doi.org/10.1371/journal.pone.0191983.
Baer, A., & Kehn-Hall, K. (2014). Viral concentration determination through plaque assays: Using traditional and novel overlay systems. Journal of Visualized Experiments: JoVE, (93), 52065. https://doi.org/10.3791/52065.
Bishop, B. (2022). MassIVE MSV000089560 - Bioprospecting the American Alligator Peptidome for Antiviral Peptides Against Venezuelan Equine Encephalitis Virus [Data set]. MassIVE. ftp://massive.ucsd.edu/MSV000089560.
Webb-Robertson, B.-J. M., McCue, L. A., Waters, K. M., Matzke, M. M., Jacobs, J. M., Metz, T. O., Varnum, S. M., & Pounds, J. G. (2010). Combined statistical analyses of peptide intensities and peptide occurrences improves identification of significant peptides from MS-based proteomics data. Journal of Proteome Research, 9(11), 5748-5756. https://doi.org/10.1021/pr1005247.
Devine, M., Juba, M., Russo, P., & Bishop, B. (2018). Structurally stable N-t-butylacrylamide hydrogel particles for the capture of peptides. Colloids and Surfaces B: Biointerfaces, 161, 471-479. https://doi.org/10.1016/j.colsurfb.2017.11.001.
Stetefeld, J., McKenna, S. A., & Patel, T. R. (2016). Dynamic light scattering: A practical guide and applications in biomedical sciences. Biophysical Reviews, 8(4), 409-427. https://doi.org/10.1007/s12551-016-0218-6.
Chiefari, J., Chong, Y. K., Ercole, F., Krstina, J., Jeffery, J., Le, T. P. T., Mayadunne, R. T. A., Meijs, G. F., Moad, C. L., Moad, G., Rizzardo, E., & Thang, S. H. (1998). Living free-radical polymerization by reversible addition−fragmentation chain transfer:  The RAFT process. Macromolecules, 31(16), 5559-5562. https://doi.org/10.1021/ma9804951.
MacKinnon, N., Guérin, G., Liu, B., Gradinaru, C. C., Rubinstein, J. L., & Macdonald, P. M. (2010). Triggered instability of liposomes bound to hydrophobically modified core−shell PNIPAM hydrogel beads. Langmuir, 26(2), 1081-1089. https://doi.org/10.1021/la902423v.
De Geest, B. G., Stubbe, B. G., Jonas, A. M., Van Thienen, T., Hinrichs, W. L. J., Demeester, J., & De Smedt, S. C. (2006). Self-exploding lipid-coated microgels. Biomacromolecules, 7(1), 373-379. https://doi.org/10.1021/bm0507296.
Saleem, Q., Liu, B., Gradinaru, C. C., & Macdonald, P. M. (2011). Lipogels: Single-lipid-bilayer-enclosed hydrogel spheres. Biomacromolecules, 12(6), 2364-2374. https://doi.org/10.1021/bm200266z.
Parodi, A., Quattrocchi, N., van de Ven, A. L., Chiappini, C., Evangelopoulos, M., Martinez, J. O., Brown, B. S., Khaled, S. Z., Yazdi, I. K., Enzo, M. V., Isenhart, L., Ferrari, M., & Tasciotti, E. (2013). Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nature Nanotechnology, 8(1), 61-68. https://doi.org/10.1038/nnano.2012.212.
Palomba, R., Parodi, A., Evangelopoulos, M., Acciardo, S., Corbo, C., de Rosa, E., Yazdi, I. K., Scaria, S., Molinaro, R., Furman, N. E. T., You, J., Ferrari, M., Salvatore, F., & Tasciotti, E. (2016). Biomimetic carriers mimicking leukocyte plasma membrane to increase tumor vasculature permeability. Scientific Reports, 6(1), 34422. https://doi.org/10.1038/srep34422.
Riley, N. M., & Coon, J. J. (2018). The role of electron transfer dissociation in modern proteomics. Analytical Chemistry, 90(1), 40-64. https://doi.org/10.1021/acs.analchem.7b04810.
Ma, B., Zhang, K., Hendrie, C., Liang, C., Li, M., Doherty-Kirby, A., & Lajoie, G. (2003). PEAKS: Powerful software for peptidede novo sequencing by tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 17(20), 2337-2342. https://doi.org/10.1002/rcm.1196.
Zhang, J., Xin, L., Shan, B., Chen, W., Xie, M., Yuen, D., Zhang, W., Zhang, Z., Lajoie, G. A., & Ma, B. (2012). PEAKS DB: De novo sequencing assisted database search for sensitive and accurate peptide identification. Molecular & Cellular Proteomics, 11(4), M111.010587. https://doi.org/10.1074/mcp.M111.010587.
PEAKS X [Computer software]. (2018). Waterloo, Ontario, Canada: Bioinformatics Solutions Inc.
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289-300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.
Haynes, W. (2013). Benjamini-Hochberg method. In W. Dubitzky, O. Wolkenhauer, K.-H. Cho, & H. Yokota (Eds.), Encyclopedia of systems biology (pp. 78-78). Springer.
Ahmed, A., Siman-Tov, G., Keck, F., Kortchak, S., Bakovic, A., Risner, K., Lu, T. K., Bhalla, N., de la Fuente-Nunez, C., & Narayanan, A. (2019). Human cathelicidin peptide LL-37 as a therapeutic antiviral targeting Venezuelan equine encephalitis virus infections. Antiviral Research, 164, 61-69. https://doi.org/10.1016/j.antiviral.2019.02.002.
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2.
Janeway, C. A., Jr., Travers, P., Walport, M., & Shlomchik, M. J., (2001). The complement system and innate immunity. In Immunobiology: the immune system in health and disease (5th ed). Garland Science.
Wang, M., Wang, J., Carver, J., Pullman, B. S., Cha, S. W., & Bandeira, N. (2018). Assembling the community-scale discoverable human proteome. Cell Systems, 7(4), 412-421.e5. https://doi.org/10.1016/j.cels.2018.08.004.
فهرسة مساهمة: Keywords: Venezuelan equine encephalitis virus; antiviral peptides; mass spectrometry; membrane-encapsulated particles; non-model organism
المشرفين على المادة: 0 (Antiviral Agents)
0 (Peptides)
تواريخ الأحداث: Date Created: 20221208 Date Completed: 20230303 Latest Revision: 20230306
رمز التحديث: 20231215
DOI: 10.1002/pmic.202200237
PMID: 36480152
قاعدة البيانات: MEDLINE
الوصف
تدمد:1615-9861
DOI:10.1002/pmic.202200237