دورية أكاديمية

Copy number variation in pituitary stalk interruption syndrome: A large case series of sporadic non-syndromic patients and literature review.

التفاصيل البيبلوغرافية
العنوان: Copy number variation in pituitary stalk interruption syndrome: A large case series of sporadic non-syndromic patients and literature review.
المؤلفون: Correa-Silva SR; Neuroendocrinology Unit, Division of Endocrinology and Metabolism, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.; Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil., Kunii I; Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil., Mitne-Neto M; Research and Development, Fleury Group, São Paulo, Brazil., Moreira CM; Research and Development, Fleury Group, São Paulo, Brazil., Dias-da-Silva MR; Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil., Abucham J; Neuroendocrinology Unit, Division of Endocrinology and Metabolism, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
المصدر: Journal of neuroendocrinology [J Neuroendocrinol] 2023 Jan; Vol. 35 (1), pp. e13221. Date of Electronic Publication: 2022 Dec 10.
نوع المنشور: Review; Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley & Sons Country of Publication: United States NLM ID: 8913461 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2826 (Electronic) Linking ISSN: 09538194 NLM ISO Abbreviation: J Neuroendocrinol Subsets: MEDLINE
أسماء مطبوعة: Publication: <2010->: Malden, MA : Wiley & Sons
Original Publication: Eynsham, Oxon, UK : Oxford University Press, c1989-
مواضيع طبية MeSH: Pituitary Diseases*/genetics , Hypopituitarism*/genetics , Hypopituitarism*/diagnosis , Hypopituitarism*/pathology, Humans ; DNA Copy Number Variations/genetics ; Comparative Genomic Hybridization/methods ; Syndrome ; Pituitary Gland/diagnostic imaging ; Pituitary Gland/pathology
مستخلص: Abnormal hypothalamic/posterior pituitary development appears to be a major determinant of pituitary stalk interruption syndrome (PSIS). The observation of familial cases and associated congenital abnormalities suggests a genetic basis. Single-gene mutations explain less than 5% of the cases, and whole exome sequencing has shown heterogeneous results. The present study aimed to assess copy number variation (CNV) using array-based comparative genomic hybridization (aCGH) in patients with non-syndromic PSIS and comprehensively review data from the literature on CNV analysis in congenital hypopituitarism (CH) patients. Twenty-one patients with sporadic CH from our outpatient clinics presented with ectopic posterior pituitary (EPP) and no central nervous system abnormalities on magnetic resonance image (MRI) or any other malformations on physical examination at presentation were enrolled in the study. aCGH using a whole-genome customized 400K oligonucleotide platform was performed in our patients. For the literature review, we searched for case reports of patients with CH and CNV detected by either karyotype or aCGH reported in PubMed up to November 2021. Thirty-five distinct rare CNVs were observed in 18 patients (86%) and two of them (6%) were classified as pathogenic: one deletion of 1.8 Mb in chromosome 17 (17q12) and one deletion of 15 Mb in chromosome 18 (18p11.32p11.21), each one in a distinct patient. In the literature review, 67 pathogenic CNVs were published in 83 patients with CH, including the present study. Most of these patients had EPP (78% out of the 45 evaluated by sellar MRI) and were syndromic (70%). The most frequently affected chromosomes were X, 18, 20 and 1. Our study has found that CNV can be a mechanism of genetic abnormality in non-syndromic patients with CH and EPP. In future studies, one or more genes in those CNVs, both pathogenic and variant of uncertain significance, may be considered as good candidate genes.
(© 2022 British Society for Neuroendocrinology.)
References: Fujisawa I, Kikuchi K, Nishimura K, et al. Transection of the pituitary stalk: development of an ectopic posterior lobe assessed with MR imaging. Radiology. 1987;165:487-489. doi:10.1148/radiology.165.2.3659371.
Mehta A, Hindmarsh PC, Mehta H, et al. Congenital hypopituitarism: clinical, molecular and neuroradiological correlates. Clin Endocrinol (Oxf). 2009;71:376-382. doi:10.1111/j.1365-2265.2009.03572.x.
Jullien N, Saveanu A, Vergier J, et al. Clinical lessons learned in constitutional hypopituitarism from two decades of experience in a large international cohort. Clin Endocrinol (Oxf). 2021;94:277-289. doi:10.1111/cen.14355.
Kikuchi K, Fujisawa I, Momoi T, et al. Hypothalamic-pituitary function in growth hormone-deficient patients with pituitary stalk transection. J Clin Endocrinol Metabol. 1988;67(4):817-823. doi:10.1210/jcem-67-4-817.
Siegel SF, Ahdab-Barmada M, Arslanian S, Foley TP. Ectopic posterior pituitary tissue and paracentric inversion of the short arm of chromosome 1 in twins. Eur J Endocrinol. 1995;133:87-92. doi:10.1530/eje.0.1330087.
Michaud JL. The developmental program of the hypothalamus and its disorders. Clin Genet. 2001;60:255-263. doi:10.1034/j.1399-0004.2001.600402.x.
Arnhold IJP, França MM, Carvalho LR, Mendonca BB, Jorge AAL. Role of GLI2 in hypopituitarism phenotype. J Mol Endocrinol. 2015;54:R141-R150. doi:10.1530/JME-15-0009.
Vergier J, Castinetti F, Saveanu A, Girard N, Brue T, Reynaud R. Pituitary stalk interruption syndrome: etiology and clinical manifestations. Curr Opin Pediatr. 2019;181:R199-R209. doi:10.1530/EJE-19-0168.
Wang CZ, Guo LL, Han BY, Su X, Guo QH, Mu YM. Pituitary stalk interruption syndrome: from clinical findings to pathogenesis. J Neuroendocrinol. 2017;29(1). doi:10.1111/jne.12451.
Bashamboo A, Bignon-Topalovic J, Moussi N, McElreavey K, Brauner R. Mutations in the human ROBO1 gene in pituitary stalk interruption syndrome. J Clin Endocrinol Metab. 2017;102:2401-2406. doi:10.1210/jc.2016-1095.
Zwaveling-Soonawala N, Alders M, Jongejan A, et al. Clues for polygenic inheritance of pituitary stalk interruption syndrome from exome sequencing in 20 patients. J Clin Endocrinol Metab. 2018;103:415-428. doi:10.1210/jc.2017-01660.
Fang X, Zhang Y, Cai J, et al. Identification of novel candidate pathogenic genes in pituitary stalk interruption syndrome by whole-exome sequencing. J Cell Mol Med. 2020;24:11703-11717. doi:10.1111/jcmm.15781.
Takagi M, Nagasaki K, Fujiwara I, et al. Heterozygous defects in PAX6 gene and congenital hypopituitarism. Eur J Endocrinol. 2015;172:37-45. doi:10.1530/EJE-14-0255.
Correa FA, Jorge AAL, Nakaguma M, et al. Pathogenic copy number variants in patients with congenital hypopituitarism associated with complex phenotypes. Clin Endocrinol (Oxf). 2018;88:425-431. doi:10.1111/cen.13535.
Riggs ER, Andersen EF, Cherry AM, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the clinical genome resource (ClinGen). Genet Med. 2020;22:245-257. doi:10.1038/s41436-019-0686-8.
Koivisto M, Akerblom HK, Remes M, de La Chapelle A. Primary hypothyroidism, growth hormone deficiency and congenital malformations in a child with the karyotype 46, XY, del (l) (q25q32). Acta Paediatr Scand. 1976;65(4):513-518. doi:10.1111/j.1651-2227.1976.tb04923.x.
Maggio MC, Iachininoto R, LA AV. Interstitial deletion of the long arm of chromosome 1 (1q 25-32). Clinical and endocrine features with a long term follow-up. Minerva Pediatr. 2003;55(1):55-59.
Descartes M, Hain JZ, Conklin M, et al. Molecular characterization of a patient with an interstitial 1q deletion [del (1) (q24.1q25.3)] and distinctive skeletal abnormalities. Am J Med Genet A. 2008;146A(22):2937-2943. doi:10.1002/ajmg.a.32550.
Filges I, Bischof-Renner A, Röthlisberger B, et al. Panhypopituitarism presenting as life-threatening heart failure caused by an inherited microdeletion in 1q25 including LHX4. Pediatrics. 2012;129:e529-e534. doi:10.1542/peds.2010-3849.
Capra V, Severino M, Rossi A, et al. Pituitary deficiency and congenital infiltrating lipomatosis of the face in a girl with deletion of chromosome 1q24.3q31.1. American Journal of Medical Genetics, Part A. Published Online. 2014;164:495-499. doi:10.1002/ajmg.a.36283.
Thakur M, Taha D, Misra VK. A case of congenital hypopituitarism associated with a 1p31 microdeletion: A possible role for LEPR and JAK1. J Endocr Soc. 2017;1:278-282. doi:10.1210/js.2016-1072.
Gustavsson P, Schoumans J, Staaf J, et al. Hemizygosity for chromosome 2q14.2-q22.1 spanning the GL12 and PROC genes associated with growth hormone deficiency, polydactyly, deep vein thrombosis and urogenital abnormalities [3]. Clin Genet. 2006;69:441-443. doi:10.1111/j.1399-0004.2006.00601.x.
Kevelam SHG, van Harssel JJT, van der Zwaag B, Smeets HJM, Paulussen ADC, Lichtenbelt KD. A patient with a mild holoprosencephaly spectrum phenotype and heterotaxy and a 1.3Mb deletion encompassing GLI2. Am J Med Genet A. 2012;158A:166-173. doi:10.1002/ajmg.a.34350.
Gregory LC, Gaston-Massuet C, Andoniadou CL, et al. The role of the sonic hedgehog signalling pathway in patients with midline defects and congenital hypopituitarism. Clin Endocrinol (Oxf). 2015;82:728-738. doi:10.1111/cen.12637.
Vetro A, Pagani S, Silengo M, et al. Severe growth hormone deficiency and pituitary malformation in a patient with chromosome 2p25 duplication and 2q37 deletion. Mol Cytogenet. 2014;7:41. doi:10.1186/1755-8166-7-41.
Elward C, Berg J, Oberlin JM, Rohena L. A case series of a mother and two daughters with a GLI2 gene deletion demonstrating variable expressivity and incomplete penetrance. Clin Case Rep. 2020;8:2138-2144. doi:10.1002/ccr3.3085.
Scala M, Accogli A, Allegri AME, et al. Familial ROBO1 deletion associated with ectopic posterior pituitary, duplication of the pituitary stalk and anterior pituitary hypoplasia. J Pediatr Endocrinol Metab. 2019;32:95-99. doi:10.1515/jpem-2018-0272.
Migliori MV, Cherubini V, Bartolotta E, Pettinari A, Pecora R. Ring chromosome 5 associated with severe growth retardation as the sole major physical abnormality. Am J Med Genet. 1994;49:108-110. doi:10.1002/ajmg.1320490121.
Izumi K, Housam R, Kapadia C, et al. Endocrine phenotype of 6q16.1-q21 deletion involving SIM1 and Prader-Willi syndrome-like features. Am J Med Genet A. 2013;161:3137-3143. doi:10.1002/ajmg.a.36149.
Fukami M, Iso M, Sato N, et al. Submicroscopic deletion involving the fibroblast growth factor receptor 1 gene in a patient with combined pituitary hormone deficiency. Endocr J. 2013;60:1013-1020. doi:10.1507/endocrj.EJ13-0023.
Lucci-Cordisco E, Scommegna S, Orteschi D, Galeazzi D, Neri G, Boscherini B. Three unrelated patients with congenital anterior pituitary aplasia and a characteristic physical and neuropsychological phenotype: A new syndrome? Am J Med Genet A. 2012;158A(11):2750-2755. doi:10.1002/ajmg.a.35579.
Cody JD, Heard P, Hale D. Identification of two novel chromosome regions associated with isolated growth hormone deficiency. J Pediatr Endocrinol Metab. 2010;23:1159-1164. doi:10.1515/jpem.2010.181.
Nolen LD, Amor D, Haywood A, et al. Deletion at 14q22-23 indicates a contiguous gene syndrome comprising anophthalmia, pituitary hypoplasia, and ear anomalies. Am J Med Genet A. 2006;140A:1711-1718. doi:10.1002/ajmg.a.31335.
el Chehadeh-Djebbar S, Callier P, Masurel-Paulet A, et al. 17q21.31 microdeletion in a patient with pituitary stalk interruption syndrome. Eur J Med Genet. 2011;54:369-373. doi:10.1016/j.ejmg.2011.03.001.
Leisti J, Leisti S, Perheentupa J, Savilahti E, Aula P. Absence of IgA and growth hormone deficiency associated with short arm deletion of chromosome 18. Arch Dis Child. 1973;48:320-322. doi:10.1136/adc.48.4.320.
Buffoni L, Tarateta A, Aicardi G, Vianello MG, Bonioli E. Nanismo ipofisario e sindrome malformativa multipla" tipo Goldenhar" in soggetto con delezione del braccio corto del cromosoma 18. Minerva Pediatr. 1976;28(12-13):716-729.
Boudailliez B, Morichon-Delvallez N, Goldfarb A, Pautard JC, Lenaerts C, Piussan C. Solitary upper incisor, hypopituitarism and monosomy 18p chromosome aberration. J Genet Hum. 1983;31(3):239-242.
Artman HG, Morris CA, Stock AD. 18p-syndrome and hypopituitarism. J Med Genet. 1992;29:671-672. doi:10.1136/jmg.29.9.671.
Gul D, Sayli BS, Gok F, Gokcay E. IgA deficiency associated with growth hormone deficiency in a boy with short arm deletion of chromosome 18 (46, XY, 18p-). Ann Genet. 1994;37(2):82-85.
Taine L, Goizet C, Wen ZQ, et al. 18p monosomy with midline defects and a de novo satellite identified by FISH. Ann Genet. 1997;40(3):158-163.
Turan S, Saka N, Guney I, Bereket A. A patient with hypopituitarism and isochromosome 18q mosaicism. Horm Res. 2005;64:261-265. doi:10.1159/000089424.
Thomas JV, Mezzasalma DF, Teixeira AM, et al. Deficiência de hormônio do crescimento, hipotireoidismo e cromossomo 18 em anel-Relato de caso. Arq Bras Endocrinol Metabol. 2006;50:951-956. doi:10.1590/S0004-27302006000500019.
Portnoï MF, Gruchy N, Marlin S, et al. Midline defects in deletion 18p syndrome: clinical and molecular characterization of three patients. Clin Dysmorphol. 2007;16:247-252. doi:10.1097/MCD.0b013e328235a572.
Rosenfeld JA, Ballif BC, Martin DM, et al. Clinical characterization of individuals with deletions of genes in holoprosencephaly pathways by aCGH refines the phenotypic spectrum of HPE. Hum Genet. 2010;127:421-440. doi:10.1007/s00439-009-0778-7.
Bellfield EJ, Chan J, Durrin S, Lindgren V, Shad Z, Boucher-Berry C. Anterior pituitary aplasia in an infant with ring chromosome 18p deletion. Case Rep Endocrinol. 2016;2016:1-5. doi:10.1155/2016/2853178.
Yang A, Kim J, Cho SY, Lee JE, Kim HJ, Jin DK. A case of de novo 18p deletion syndrome with panhypopituitarism. Ann Pediatr Endocrinol Metab. 2019;24:60-63. doi:10.6065/apem.2019.24.1.60.
Giordano M, Muratore V, Babu D, Meazza C, Bozzola M. A 18p11.23-p11.31 microduplication in a boy with psychomotor delay, cerebellar vermis hypoplasia, chorioretinal coloboma, deafness and GH deficiency. Mol Cytogenet. 2016;9:89. doi:10.1186/s13039-016-0298-9.
Garcia-Heras J, Kilani RA, Martin RA, Lamp S. A deletion of proximal 20p inherited from a normal mosaic carrier mother in a newborn with panhypopituitarism and craniofacial dysmorphism. Clin Dysmorphol. 2005;14:137-140. doi:10.1097/00019605-200507000-00006.
Kamath BM, Thiel BD, Gai X, et al. SNP array mapping of chromosome 20p deletions: genotypes, phenotypes, and copy number variation. Hum Mutat. 2009;30:371-378. doi:10.1002/humu.20863.
Williams P, Wetherbee JJ, Rosenfeld JA, Hersh JH. 20p11 deletion in a female child with panhypopituitarism, cleft lip and palate, dysmorphic facial features, global developmental delay and seizure disorder. Am J Med Genet A. 2011;155:186-191. doi:10.1002/ajmg.a.33763.
Dayem-Quere M, Giuliano F, Wagner-Mahler K, et al. Delineation of a region responsible for panhypopituitarism in 20p11.2. Am J Med Genet A. 2013;161:1547-1554. doi:10.1002/ajmg.a.35921.
Tsai EA, Grochowski CM, Falsey AM, et al. Heterozygous deletion of FOXA2 segregates with disease in a family with Heterotaxy, panhypopituitarism, and biliary atresia. Hum Mutat. 2015;36:631-637. doi:10.1002/humu.22786.
Parsons SJH, Wright NB, Burkitt-Wright E, Skae MS, Murray PG. A heterozygous microdeletion of 20p12.2-3 encompassing PROKR2 and BMP2 in a patient with congenital hypopituitarism and growth hormone deficiency. Am J Med Genet A. 2017;173:2261-2267. doi:10.1002/ajmg.a.38306.
Dines JN, Liu YJ, Neufeld-Kaiser W, et al. Expanding phenotype with severe midline brain anomalies and missense variant supports a causal role for FOXA2 in 20p11.2 deletion syndrome. Am J Med Genet A. 2019;179:1783-1790. doi:10.1002/ajmg.a.61281.
Sugawara D, Matsuura M, Sato H, Ohashi H, Ichihashi K. 20p11.23-p11.21 deletion in a child with hyperinsulinemic hypoglycemia and gh deficiency: A case report. Clin Pediatr Endocrinol. 2021;30:133-137. doi:10.1297/cpe.30.133.
Hol FA, Schepens MT, van Beersum SEC, et al. Identification and characterization of an Xq26-q27 duplication in a family with spina bifida and panhypopituitarism suggests the involvement of two distinct genes. Genomics. 2000;69:174-181. doi:10.1006/geno.2000.6327.
Solomon NM, Ross SA, Morgan T, et al. Array comparative genomic hybridisation analysis of boys with X linked hypopituitarism identifies a 3.9 mb duplicated critical region at Xq27 containing SOX3. J Med Genet. 2004;41:669-678. doi:10.1136/jmg.2003.016949.
Woods KS, Cundall M, Turton J, et al. Over- and underdosage of SOX3 is associated with infundibular hypoplasia and hypopituitarism. Am J Hum Genet. 2005;76:833-849. doi:10.1086/430134.
Stagi S, Lapi E, Pantaleo M, et al. A SOX3 (Xq26.3-27.3) duplication in a boy with growth hormone deficiency, ocular dyspraxia, and intellectual disability: A long-term follow-up and literature review. Hormones (Athens). 2014;13:552-560. doi:10.14310/horm.2002.1523.
Bauters M, Frints SG, van Esch H, et al. Evidence for increased SOX3 dosage as a risk factor for X-linked hypopituitarism and neural tube defects. Am J Med Genet A. 2014;164:1947-1952. doi:10.1002/ajmg.a.36580.
Rosolowsky ET, Stein R, Marks SD, Leonard N. Marked phenotypic variable expression among brothers with duplication of Xq27.1 involving the SOX3 gene. J Pediatr Endocrinol Metab. 2015;33:443-447. doi:10.1515/jpem-2015-0131.
Arya VB, Chawla G, Nambisan AKR, et al. Xq27.1 duplication encompassing SOX3: variable phenotype and smallest duplication associated with hypopituitarism to date-A large case series of unrelated patients and a literature review. Horm Res Paediatr. 2020;92:382-389. doi:10.1159/000503784.
Elizabeth MSM, Verkerk AJMH, Hokken-Koelega ACS, et al. Congenital hypopituitarism in two brothers with a duplication of the ‘acrogigantism gene’ GPR101: clinical findings and review of the literature. Pituitary. 2021;24:229-241. doi:10.1007/s11102-020-01101-8.
Alatzoglou KS, Azriyanti A, Rogers N, et al. SOX3 deletion in mouse and human is associated with persistence of the craniopharyngeal canal. J Clin Endocrinol Metab. 2014;99:E2702-E2708. doi:10.1210/jc.2014-1160.
Elizabeth MSM, Verkerk AJMH, Hokken-Koelega ACS, et al. Unique near-complete deletion of GLI2 in a patient with combined pituitary hormone deficiency and post-axial polydactyly. Growth Horm IGF Res. 2020;50:35-41. doi:10.1016/j.ghir.2019.10.002.
Rasmussen M, Vestergaard EM, Graakjaer J, et al. 17q12 deletion and duplication syndrome in Denmark-A clinical cohort of 38 patients and review of the literature. Am J Med Genet A. 2016;170:2934-2942. doi:10.1002/ajmg.a.37848.
Kania A, Johnson RL, Jessell TM. Coordinate roles for LIM homeobox genes in directing the dorsoventral trajectory of motor axons in the vertebrate limb. Cell. 2000;102:161-173. doi:10.1016/S0092-8674(00)00022-2.
Sebold C, Soileau B, Heard P, et al. Whole arm deletions of 18p: medical and developmental effects. Am J Med Genet A. 2015;167:313-323. doi:10.1002/ajmg.a.36880.
Jin JZ, Gu S, McKinney P, Ding J. Expression and functional analysis of Tgif during mouse midline development. Dev Dyn. 2006;235:547-553. doi:10.1002/dvdy.20642.
Knepper JL, James AC, Ming JE. TGIF, a gene associated with human brain defects, regulates neuronal development. Dev Dyn. 2006;235:1482-1490. doi:10.1002/dvdy.20725.
Kuang C, Xiao Y, Yang L, et al. Intragenic deletion of Tgif causes defects in brain development. Hum Mol Genet. 2006;15:3508-3519. doi:10.1093/hmg/ddl427.
Keaton AA, Solomon BD, Kauvar EF, et al. TGIF mutations in human holoprosencephaly: correlation between genotype and phenotype. Mol Syndromol. 2011;1:211-222. doi:10.1159/000328203.
Tatsi C, Sertedaki A, Voutetakis A, et al. Pituitary stalk interruption syndrome and isolated pituitary hypoplasia may be caused by mutations in holoprosencephaly-related genes. J Clin Endocrinol Metab. 2013;98:E779-E784. doi:10.1210/jc.2012-3982.
Sheppard SE, Campbell IM, Harr MH, et al. Expanding the genotypic and phenotypic spectrum in a diverse cohort of 104 individuals with Wiedemann-Steiner syndrome. Am J Med Genet A. 2021;185:1649-1665. doi:10.1002/ajmg.a.62124.
Baer S, Afenjar A, Smol T, et al. Wiedemann-Steiner syndrome as a major cause of syndromic intellectual disability: A study of 33 French cases. Clin Genet. 2018;94:141-152. doi:10.1111/cge.13254.
Stoyle G, Banka S, Langley C, Jones EA, Banerjee I. Growth hormone deficiency as a cause for short stature in wiedemann-steiner syndrome. Endocrinol Diabetes Metab Case Rep. 2018;2018:18-0085. doi:10.1530/EDM-18-0085.
فهرسة مساهمة: Keywords: congenital hypopituitarism; copy number variation; ectopic posterior pituitary; pituitary stalk interruption syndrome
تواريخ الأحداث: Date Created: 20221210 Date Completed: 20230201 Latest Revision: 20230210
رمز التحديث: 20231215
DOI: 10.1111/jne.13221
PMID: 36495109
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-2826
DOI:10.1111/jne.13221