دورية أكاديمية

Hierarchical Coarse-Grained Strategy for Macromolecular Self-Assembly: Application to Hepatitis B Virus-Like Particles.

التفاصيل البيبلوغرافية
العنوان: Hierarchical Coarse-Grained Strategy for Macromolecular Self-Assembly: Application to Hepatitis B Virus-Like Particles.
المؤلفون: Depta PN; Institute of Solids Process Engineering and Particle Technology (SPE), Hamburg University of Technology, 21073 Hamburg, Germany., Dosta M; Institute of Solids Process Engineering and Particle Technology (SPE), Hamburg University of Technology, 21073 Hamburg, Germany.; Boehringer Ingelheim Pharma GmbH & Co Kg., 88400 Biberach an der Riss, Germany., Wenzel W; Institute of Nanotechnology (INT), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany., Kozlowska M; Institute of Nanotechnology (INT), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany., Heinrich S; Institute of Solids Process Engineering and Particle Technology (SPE), Hamburg University of Technology, 21073 Hamburg, Germany.
المصدر: International journal of molecular sciences [Int J Mol Sci] 2022 Nov 24; Vol. 23 (23). Date of Electronic Publication: 2022 Nov 24.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: MDPI Country of Publication: Switzerland NLM ID: 101092791 Publication Model: Electronic Cited Medium: Internet ISSN: 1422-0067 (Electronic) Linking ISSN: 14220067 NLM ISO Abbreviation: Int J Mol Sci Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Basel, Switzerland : MDPI, [2000-
مواضيع طبية MeSH: Hepatitis B virus* , Macromolecular Substances*/chemistry , Artificial Virus-Like Particles*/chemistry, Capsid/chemistry ; Capsid Proteins/chemistry ; Hepatitis B Core Antigens
مستخلص: Macromolecular self-assembly is at the basis of many phenomena in material and life sciences that find diverse applications in technology. One example is the formation of virus-like particles (VLPs) that act as stable empty capsids used for drug delivery or vaccine fabrication. Similarly to the capsid of a virus, VLPs are protein assemblies, but their structural formation, stability, and properties are not fully understood, especially as a function of the protein modifications. In this work, we present a data-driven modeling approach for capturing macromolecular self-assembly on scales beyond traditional molecular dynamics (MD), while preserving the chemical specificity. Each macromolecule is abstracted as an anisotropic object and high-dimensional models are formulated to describe interactions between molecules and with the solvent. For this, data-driven protein-protein interaction potentials are derived using a Kriging-based strategy, built on high-throughput MD simulations. Semi-automatic supervised learning is employed in a high performance computing environment and the resulting specialized force-fields enable a significant speed-up to the micrometer and millisecond scale, while maintaining high intermolecular detail. The reported generic framework is applied for the first time to capture the formation of hepatitis B VLPs from the smallest building unit, i.e., the dimer of the core protein HBcAg. Assembly pathways and kinetics are analyzed and compared to the available experimental observations. We demonstrate that VLP self-assembly phenomena and dependencies are now possible to be simulated. The method developed can be used for the parameterization of other macromolecules, enabling a molecular understanding of processes impossible to be attained with other theoretical models.
References: J Chem Theory Comput. 2014 Sep 9;10(9):4079-97. (PMID: 26588550)
J Phys Chem B. 2017 Dec 7;121(48):10934-10949. (PMID: 29117675)
Mol Cell. 2006 Jun 23;22(6):843-850. (PMID: 16793552)
Biophys J. 2006 Jul 1;91(1):42-54. (PMID: 16565055)
J Chem Phys. 2007 Jan 7;126(1):014101. (PMID: 17212484)
J Am Chem Soc. 2017 Nov 22;139(46):16932-16938. (PMID: 29125756)
J Phys Chem B. 2005 Jul 21;109(28):13798-810. (PMID: 16852728)
J Chem Inf Model. 2018 Feb 26;58(2):362-369. (PMID: 29298056)
Bioinformatics. 2016 May 15;32(10):1568-70. (PMID: 26773132)
Adv Drug Deliv Rev. 2015 Dec 1;95:77-89. (PMID: 26482188)
J Chem Theory Comput. 2008 May;4(5):819-34. (PMID: 26621095)
Curr Protoc Bioinformatics. 2016 Jun 20;54:5.6.1-5.6.37. (PMID: 27322406)
Curr Opin Struct Biol. 2007 Apr;17(2):192-8. (PMID: 17383173)
Chem Rev. 2021 Aug 25;121(16):10142-10186. (PMID: 33705118)
Curr Opin Struct Biol. 2020 Apr;61:146-152. (PMID: 31991326)
Curr Opin Biotechnol. 2007 Dec;18(6):537-45. (PMID: 18083549)
ACS Omega. 2021 Jan 11;6(3):1758-1772. (PMID: 33521417)
ACS Nano. 2020 Oct 27;14(10):12642-12651. (PMID: 32924431)
Methods Enzymol. 2009;455:395-417. (PMID: 19289214)
Structure. 2006 Dec;14(12):1767-77. (PMID: 17161367)
Annu Rev Biophys. 2013;42:73-93. (PMID: 23451897)
BMC Biophys. 2011 Apr 13;4:7. (PMID: 21596002)
Biophys J. 2010 Mar 17;98(6):1065-74. (PMID: 20303864)
Phys Rev Lett. 2009 May 15;102(19):198102. (PMID: 19518999)
Biotechnol Bioeng. 2021 Oct;118(10):3926-3940. (PMID: 34170511)
Annu Rev Phys Chem. 2020 Apr 20;71:361-390. (PMID: 32092281)
Chem Rev. 2016 Jul 27;116(14):7898-936. (PMID: 27333362)
Nature. 1997 Mar 6;386(6620):88-91. (PMID: 9052786)
Methods Enzymol. 2011;487:545-74. (PMID: 21187238)
J Chem Phys. 2004 Jun 22;120(24):11919-29. (PMID: 15268227)
Biophys J. 2011 Jun 22;100(12):3035-44. (PMID: 21689538)
Phys Chem Chem Phys. 2005 Dec 7;7(23):3910-6. (PMID: 19810318)
J Chem Inf Model. 2016 Nov 28;56(11):2207-2215. (PMID: 27775349)
J Mol Biol. 2008 Jan 11;375(2):581-94. (PMID: 18022640)
J Mol Biol. 2007 Feb 9;366(1):14-8. (PMID: 17157314)
J Chem Theory Comput. 2017 Oct 10;13(10):5106-5116. (PMID: 28876928)
J Mol Model. 2014 Aug;20(8):2306. (PMID: 25024008)
Mol Cell. 1999 Jun;3(6):771-80. (PMID: 10394365)
J Am Chem Soc. 2020 Apr 29;142(17):7868-7882. (PMID: 32233479)
J Biol Phys. 2018 Jun;44(2):147-162. (PMID: 29607454)
PLoS Comput Biol. 2010 Jun 10;6(6):e1000810. (PMID: 20548957)
Biochemistry. 1999 Nov 2;38(44):14644-52. (PMID: 10545189)
Curr Opin Struct Biol. 2022 Feb;72:9-17. (PMID: 34388673)
Bioinformatics. 2014 Oct;30(19):2811-2. (PMID: 24930139)
Biomed Res Int. 2015;2015:183918. (PMID: 25785262)
Cold Spring Harb Perspect Med. 2015 Nov 09;5(12):. (PMID: 26552701)
J Virol. 1990 Jul;64(7):3319-30. (PMID: 2191149)
J Biol Chem. 2015 Jun 26;290(26):16238-45. (PMID: 25953902)
PLoS One. 2013 Jun 13;8(6):e63640. (PMID: 23785395)
J Nanobiotechnology. 2018 Apr 13;16(1):39. (PMID: 29653575)
J Phys Condens Matter. 2010 Mar 17;22(10):104101. (PMID: 21389435)
Semin Immunol. 2017 Dec;34:123-132. (PMID: 28887001)
J Mol Biol. 2018 Dec 7;430(24):4941-4954. (PMID: 30539760)
J Chem Theory Comput. 2016 Oct 11;12(10):5100-5110. (PMID: 27598684)
Vaccine. 2015 Nov 4;33(44):5890-6. (PMID: 26073014)
J Phys Chem B. 2016 May 19;120(19):4399-409. (PMID: 27104227)
Fold Des. 1997;2(1):1-22. (PMID: 9080195)
EMBO J. 2007 Sep 19;26(18):4160-7. (PMID: 17762862)
Sci Rep. 2020 Oct 23;10(1):18211. (PMID: 33097750)
Curr Opin Struct Biol. 2005 Apr;15(2):144-50. (PMID: 15837171)
J Am Chem Soc. 2014 Mar 5;136(9):3536-41. (PMID: 24548133)
ACS Nano. 2015 Sep 22;9(9):9087-96. (PMID: 26266555)
Cancer Res. 2011 Jan 15;71(2):516-27. (PMID: 21224362)
Curr Opin Struct Biol. 2012 Apr;22(2):144-50. (PMID: 22277168)
J Chem Phys. 2013 Sep 7;139(9):090901. (PMID: 24028092)
J Chem Inf Model. 2019 Jan 28;59(1):386-398. (PMID: 30550276)
J Am Chem Soc. 2018 May 2;140(17):5784-5790. (PMID: 29672035)
Biomolecules. 2021 Sep 11;11(9):. (PMID: 34572559)
J Chem Theory Comput. 2015 Feb 10;11(2):723-39. (PMID: 26575407)
Nat Rev Phys. 2021;3(2):76-91. (PMID: 33728406)
Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15821-6. (PMID: 16247012)
Biophys J. 2002 Aug;83(2):1217-30. (PMID: 12124301)
Annu Rev Virol. 2016 Sep 29;3(1):429-451. (PMID: 27482896)
Biochemistry. 2014 Sep 2;53(34):5496-504. (PMID: 25102363)
ACS Omega. 2017 Mar 31;2(3):1134-1145. (PMID: 30023628)
Trends Microbiol. 2011 Jan;19(1):14-23. (PMID: 21163649)
Front Mol Biosci. 2020 Aug 28;7:194. (PMID: 33005628)
J Chem Theory Comput. 2013 Jan 8;9(1):687-97. (PMID: 26589065)
J Phys Chem B. 2007 Jul 12;111(27):7812-24. (PMID: 17569554)
معلومات مُعتمدة: HE 4526/19-2 Deutsche Forschungsgemeinschaft; WE1863/30-2 Deutsche Forschungsgemeinschaft; Brigitte-Schlieben-Lange-Programm Ministry of Science, Research and Art of Baden-Württemberg; Acid 44178 High-Performance Computing Center Stuttgart; 491268466 - Open Access Publishing Deutsche Forschungsgemeinschaft (DFG) and Hamburg University of Technology (TUHH)
فهرسة مساهمة: Keywords: capsid formation; hepatitis B VLP; macromolecular self-assembly; molecular discrete element method; multiscale modeling; supervised learning
المشرفين على المادة: 0 (Capsid Proteins)
0 (Hepatitis B Core Antigens)
0 (Macromolecular Substances)
تواريخ الأحداث: Date Created: 20221211 Date Completed: 20221229 Latest Revision: 20221229
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC9740473
DOI: 10.3390/ijms232314699
PMID: 36499027
قاعدة البيانات: MEDLINE