دورية أكاديمية

Guidelines for DC preparation and flow cytometry analysis of mouse nonlymphoid tissues.

التفاصيل البيبلوغرافية
العنوان: Guidelines for DC preparation and flow cytometry analysis of mouse nonlymphoid tissues.
المؤلفون: Probst HC; Institute of Immunology, University Medical Center Mainz, Mainz, Germany.; Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany., Stoitzner P; Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria., Amon L; Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany., Backer RA; Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.; Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany., Brand A; Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany., Chen J; Gustave Roussy Cancer Campus (GRCC), U1015 INSERM, University Paris Saclay, Villejuif, France., Clausen BE; Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.; Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany., Dieckmann S; Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria., Dudziak D; Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany.; Medical Immunology Campus Erlangen (MICE), D-91054, Erlangen, Germany.; Deutsches Zentrum Immuntherapie (DZI), Germany.; Friedrich-Alexander University (FAU), Erlangen-Nürnberg, Germany., Heger L; Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany., Hodapp K; Institute of Immunology, University Medical Center Mainz, Mainz, Germany.; Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany., Hornsteiner F; Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria., Hovav AH; Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel., Jacobi L; Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany., Ji X; Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 82152, Planegg-Martinsried, Germany.; Institute for Cardiovascular Physiology and Pathophysiology, Biomedical Center, Faculty of Medicine, LMU Munich, 82152, Planegg-Martinsried, Germany., Kamenjarin N; Institute of Immunology, University Medical Center Mainz, Mainz, Germany.; Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany., Lahl K; Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, 2800, Denmark.; Immunology Section, Lund University, Lund, 221 84, Sweden., Lahmar I; Gustave Roussy Cancer Campus (GRCC), U1015 INSERM, University Paris Saclay, Villejuif, France., Lakus J; Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany., Lehmann CHK; Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany.; Medical Immunology Campus Erlangen (MICE), D-91054, Erlangen, Germany., Ortner D; Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria., Picard M; Gustave Roussy Cancer Campus (GRCC), U1015 INSERM, University Paris Saclay, Villejuif, France., Roberti MP; Gustave Roussy Cancer Campus (GRCC), U1015 INSERM, University Paris Saclay, Villejuif, France.; Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD), Heidelberg, Germany.; Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany., Rossnagel L; Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany., Saba Y; Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel., Schalla C; Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany.; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany., Schlitzer A; Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany., Schraml BU; Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 82152, Planegg-Martinsried, Germany.; Institute for Cardiovascular Physiology and Pathophysiology, Biomedical Center, Faculty of Medicine, LMU Munich, 82152, Planegg-Martinsried, Germany., Schütze K; Institute of Immunology, University Medical Center Mainz, Mainz, Germany.; Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany., Seichter A; Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany., Seré K; Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany.; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany., Seretis A; Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria., Sopper S; Internal Medicine V, Hematology and Oncology, Medical University of Innsbruck, Innsbruck, Austria.; Tyrolean Cancer Research Center, Innsbruck, Austria., Strandt H; Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria., Sykora MM; Internal Medicine V, Hematology and Oncology, Medical University of Innsbruck, Innsbruck, Austria.; Tyrolean Cancer Research Center, Innsbruck, Austria., Theobald H; Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany., Tripp CH; Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria., Zitvogel L; Gustave Roussy Cancer Campus (GRCC), U1015 INSERM, University Paris Saclay, Villejuif, France.
المصدر: European journal of immunology [Eur J Immunol] 2023 Nov; Vol. 53 (11), pp. e2249819. Date of Electronic Publication: 2022 Dec 13.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 1273201 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-4141 (Electronic) Linking ISSN: 00142980 NLM ISO Abbreviation: Eur J Immunol Subsets: MEDLINE
أسماء مطبوعة: Publication: <2005->: Weinheim : Wiley-VCH
Original Publication: Weinheim, Verlag Chemie GmbH.
مواضيع طبية MeSH: Dendritic Cells* , Skin*, Animals ; Humans ; Flow Cytometry ; Myeloid Cells ; Kidney ; Mammals
مستخلص: This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various nonlymphoid tissues. DC are sentinels of the immune system present in almost every mammalian organ. Since they represent a rare cell population, DC need to be extracted from organs with protocols that are specifically developed for each tissue. This article provides detailed protocols for the preparation of single-cell suspensions from various mouse nonlymphoid tissues, including skin, intestine, lung, kidney, mammary glands, oral mucosa and transplantable tumors. Furthermore, our guidelines include comprehensive protocols for multiplex flow cytometry analysis of DC subsets and feature top tricks for their proper discrimination from other myeloid cells. With this collection, we provide guidelines for in-depth analysis of DC subsets that will advance our understanding of their respective roles in healthy and diseased tissues. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all coauthors, making it an essential resource for basic and clinical DC immunologists.
(© 2022 The Authors. European Journal of Immunology published by Wiley-VCH GmbH.)
References: Watt, F. M., Mammalian skin cell biology: at the interface between laboratory and clinic. Science. 2014. 346: 937-940.
Chambers, E. S. and Vukmanovic-Stejic, M., Skin barrier immunity and ageing. Immunology. 2020. 160: 116-125.
Merad, M., Ginhoux, F. and Collin, M., Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat. Rev. Immunol. 2008. 8: 935-947.
Nielsen, M. M., Witherden, D. A. and Havran, W. L., γδ T cells in homeostasis and host defence of epithelial barrier tissues. Nat. Rev. Immunol. 2017. 17: 733-745.
Tamoutounour, S., Guilliams, M., Sanchis, M., Liu, H., Terhorst, D., Malosse, C., Pollet, E. et al., Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity. 2013. 39: 1-14.
Clausen, B. E. and Stoitzner, P., Functional specialization of skin dendritic cell subsets in regulating T cell responses. Front. Immunol. 2015. https://doi.org/10.3389/fimmu.2015.00534.
Allan, R. S., Waithman, J., Bedoui, S., Jones, C. M., Villadangos, J. A., Zhan, Y., Lew, A. M. et al., Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity. 2006. 25: 153-162.
Pasparakis, M., Haase, I. and Nestle, F. O., Mechanisms regulating skin immunity and inflammation. Nat. Rev. Immunol. 2014. 14: 289-301.
Mairhofer, D. G., Ortner, D., Tripp, C. H., Schaffenrath, S., Fleming, V., Heger, L., Komenda, K. et al., Impaired gp100-specific CD8+ T-cell responses in the presence of myeloid-derived suppressor cells in a spontaneous mouse melanoma model. J. Invest. Dermatol. 2015. 135: 2785-2793.
Brand, A., Diener, N., Zahner, S. P., Tripp, C., Backer, R. A., Karram, K., Jiang, A. et al., E-Cadherin is dispensable to maintain langerhans cells in the epidermis. J. Invest. Dermatol. 2020. 140: 132-142.e3.
Treuting, P. M., Arends, M. J. and Dintzis, S. M., Upper Gastrointestinal Tract. In Treuting, P. M., Dintzis, S. M. and Montine, K. S. (Eds.) Comparative Anatomy and Histology. Academic Press, San Diego 2018, pp 191-211.
Treuting, P. M., Arends, M. J. and Dintzis, S. M., Lower Gastrointestinal Tract. In Treuting, P. M., Dintzis, S. M. and Montine, K. S. (Eds.) Comparative Anatomy and Histology. Academic Press, San Diego 2018, pp 213-228.
Houston, S. A., Cerovic, V., Thomson, C., Brewer, J., Mowat, A. M. and Milling, S., The lymph nodes draining the small intestine and colon are anatomically separate and immunologically distinct. Mucosal. Immunol. 2016. 9: 468-478.
Mayer, J. U., Brown, S. L., MacDonald, A. S. and Milling, S. W., Defined intestinal regions are drained by specific lymph nodes that mount distinct Th1 and Th2 responses against schistosoma mansoni eggs. Front. Immunol. 2020. 11: 592325.
Cook, P. C. and MacDonald, A. S., Dendritic cells in lung immunopathology. Semin. Immunopathol. 2016. 38: 449-460.
Gilliet, M., Cao, W. and Liu, Y. J., Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat. Rev. Immunol. 2008. 8: 594-606.
de Heer, H. J., Hammad, H., Soullie, T., Hijdra, D., Vos, N., Willart, M. A., Hoogsteden, H. C. et al., Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. J. Exp. Med. 2004. 200: 89-98.
Guilliams, M., Lambrecht, B. N. and Hammad, H., Division of labor between lung dendritic cells and macrophages in the defense against pulmonary infections. Mucosal. Immunol. 2013. 6: 464-473.
Plantinga, M., Hammad, H. and Lambrecht, B. N., Origin and functional specializations of DC subsets in the lung. Eur. J. Immunol. 2010. 40: 2112-2118.
Plantinga, M., Guilliams, M., Vanheerswynghels, M., Deswarte, K., Branco-Madeira, F., Toussaint, W., Vanhoutte, L. et al., Conventional and monocyte-derived CD11b(+) dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity. 2013. 38: 322-335.
Bosteels, C., Neyt, K., Vanheerswynghels, M., van Helden, M. J., Sichien, D., Debeuf, N., De Prijck, S. et al., Inflammatory type 2 cDCs acquire features of cDC1s and macrophages to orchestrate immunity to respiratory virus infection. Immunity. 2020. 52: 1039-1056.e1039.
Misharin, A. V., Morales-Nebreda, L., Mutlu, G. M., Budinger, G. R. and Perlman, H., Flow cytometry analysis of macrophages and dendritic cell subsets in the mouse lung. Am. J. Respir. Cell. Mol. Biol. 2013. 49: 503-510.
Hussell, T. and Bell, T. J., Alveolar macrophages: plasticity in a tissue-specific context. Nat. Rev. Immunol. 2014. 14: 81-93.
Chakarov, S., Lim, H. Y., Tan, L., Lim, S. Y., See, P., Lum, J., Zhang, X. M. et al., Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science. 2019. 363.
Gibbings, S. L., Thomas, S. M., Atif, S. M., McCubbrey, A. L., Desch, A. N., Danhorn, T., Leach, S. M. et al., Three unique interstitial macrophages in the murine lung at steady state. Am. J. Respir. Cell. Mol. Biol. 2017. 57: 66-76.
Schyns, J., Bai, Q., Ruscitti, C., Radermecker, C., De Schepper, S., Chakarov, S., Farnir, F. et al., Non-classical tissue monocytes and two functionally distinct populations of interstitial macrophages populate the mouse lung. Nat. Commun. 2019. 10: 3964.
Wilensky, A., Mizraji, G., Tabib, Y., Sharawi, H. and Hovav, A. H., Analysis of leukocytes in oral mucosal tissues. Methods Mol. Biol. 2017. 1559: 267-278.
Bittner-Eddy, P. D., Fischer, L. A., Tu, A. A., Allman, D. A. and Costalonga, M., Discriminating between interstitial and circulating leukocytes in tissues of the murine oral mucosa avoiding nasal-associated lymphoid tissue contamination. Front. Immunol. 2017. 8: 1398.
Moutsopoulos, N. M. and Konkel, J. E., Tissue-specific immunity at the oral mucosal barrier. Trends Immunol. 2018. 39: 276-287.
Hovav, A. H., Dendritic cells of the oral mucosa. Mucosal. Immunol. 2014. 7: 27-37.
Hajishengallis, G., Periodontitis: from microbial immune subversion to systemic inflammation. Nat. Rev. Immunol. 2015. 15: 30-44.
Arizon, M., Nudel, I., Segev, H., Mizraji, G., Elnekave, M., Furmanov, K., Eli-Berchoer, L. et al., Langerhans cells down-regulate inflammation-driven alveolar bone loss. Proc. Natl. Acad. Sci. U.S.A. 2012. 109: 7043-7048.
Anders, H.-J., Wilkens, L., Schraml, B. and Marschner, J., One concept does not fit all: the immune system in different forms of acute kidney injury. Nephrol. Dial. Transpl. 2020. 36: 29-38.
Kurts, C., Ginhoux, F. and Panzer, U., Kidney dendritic cells: fundamental biology and functional roles in health and disease. Nature reviews. Nephrology. 2020. 128: 1-17.
Viehmann, S. F., Böhner, A. M. C., Kurts, C. and Brähler, S., The multifaceted role of the renal mononuclear phagocyte system. Cell. Immunol. 2018. 330: 97-104.
Munro, D. A. D. and Hughes, J., The origins and functions of tissue-resident macrophages in kidney development. Frontiers in Physiology. 2017. 8: 275-313.
Hochheiser, K., Heuser, C., Krause, T. A., Teteris, S., Ilias, A., Weisheit, C., Hoss, F. et al., Exclusive CX3CR1 dependence of kidney DCs impacts glomerulonephritis progression. J. Clin. Invest. 2013. 123: 4242-4254.
Watson, C. J. and Khaled, W. T., Mammary development in the embryo and adult: new insights into the journey of morphogenesis and commitment. Development. 2020. 147.
Sun, X. and Ingman, W. V., Cytokine networks that mediate epithelial cell-macrophage crosstalk in the mammary gland: implications for development and cancer. J Mammary Gland Biol Neoplasia. 2014. 19: 191-201.
Chakrabarti, R., Celia-Terrassa, T., Kumar, S., Hang, X., Wei, Y., Choudhury, A., Hwang, J. et al., Notch ligand Dll1 mediates cross-talk between mammary stem cells and the macrophageal niche. Science. 2018. 360.
Betts, C. B., Pennock, N. D., Caruso, B. P., Ruffell, B., Borges, V. F. and Schedin, P., Mucosal immunity in the female murine mammary gland. J. Immunol. 2018. 201: 734-746.
Dawson, C. A., Pal, B., Vaillant, F., Gandolfo, L. C., Liu, Z., Bleriot, C., Ginhoux, F. et al., Tissue-resident ductal macrophages survey the mammary epithelium and facilitate tissue remodelling. Nat. Cell. Biol. 2020. 22: 546-558.
Li, C. M., Shapiro, H., Tsiobikas, C., Selfors, L. M., Chen, H., Rosenbluth, J., Moore, K. et al., Aging-associated alterations in mammary epithelia and stroma revealed by single-cell RNA sequencing. Cell. Rep. 2020. 33: 108566.
Gao, H., Dong, Q., Chen, Y., Zhang, F., Wu, A., Shi, Y., Bandyopadhyay, A. et al., Murine mammary stem/progenitor cell isolation: Different method matters? Springerplus. 2016. 5: 140.
Chapman, P. B., Hauschild, A., Robert, C., Haanen, J. B., Ascierto, P., Larkin, J., Dummer, R. et al., Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 2011. 364: 2507-2516.
Luke, J. J., Flaherty, K. T., Ribas, A. and Long, G. V., Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nature reviews. Clin. Oncol. 2017. 14: 463-482.
Pardoll, D. M., The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer. 2012. 12: 252-264.
Zitvogel, L., Pitt, J. M., Daillère, R., Smyth, M. J. and Kroemer, G., Mouse models in oncoimmunology. Nat. Rev. Cancer. 2016. 16: 759-773.
Oh, T., Fakurnejad, S., Sayegh, E. T., Clark, A. J., Ivan, M. E., Sun, M. Z., Safaee, M. et al., Immunocompetent murine models for the study of glioblastoma immunotherapy. J. Transl. Med. 2014. 12: 107.
Sanmamed, M. F., Chester, C., Melero, I. and Kohrt, H., Defining the optimal murine models to investigate immune checkpoint blockers and their combination with other immunotherapies. Ann. Oncol. 2016. 27: 1190-1198.
Herlyn, M. and Fukunaga-Kalabis, M., What is a good model for melanoma? J. Invest. Dermatol. 2010. 130: 911-912.
Fidler, I. J. and Nicolson, G. L., Organ selectivity for implantation survival and growth of B16 melanoma variant tumor lines. J. Natl. Cancer Inst. 1976. 57: 1199-1202.
Lugade, A. A., Moran, J. P., Gerber, S. A., Rose, R. C., Frelinger, J. G. and Lord, E. M., Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J. Immunol. 2005. 174: 7516-7523.
Becker, J. C., Houben, R., Schrama, D., Voigt, H., Ugurel, S. and Reisfeld, R. A., Mouse models for melanoma: a personal perspective. Exp. Dermatol. 2010. 19: 157-164.
Steitz, J., Brück, J., Steinbrink, K., Enk, A., Knop, J. and Tüting, T., Genetic immunization of mice with human tyrosinase-related protein 2: implications for the immunotherapy of melanoma. Int. J. Cancer. 2000. 86: 89-94.
Melnikova, V. O., Bolshakov, S. V., Walker, C. and Ananthaswamy, H. N., Genomic alterations in spontaneous and carcinogen-induced murine melanoma cell lines. Oncogene. 2004. 23: 2347-2356.
Jenkins, M. H., Steinberg, S. M., Alexander, M. P., Fisher, J. L., Ernstoff, M. S., Turk, M. J., Mullins, D. W. et al., Multiple murine BRaf(V600E) melanoma cell lines with sensitivity to PLX4032. Pigment Cell Melanoma Res. 2014. 27: 495-501.
Flaherty, K. T., Hodi, F. S. and Fisher, D. E., From genes to drugs: targeted strategies for melanoma. Nat. Rev. Cancer. 2012. 12: 349-361.
Knight, D. A., Ngiow, S. F., Li, M., Parmenter, T., Mok, S., Cass, A., Haynes, N. M. et al., Host immunity contributes to the anti-melanoma activity of BRAF inhibitors. J. Clin. Invest. 2013. 123: 1371-1381.
Koya, R. C., Mok, S., Otte, N., Blacketor, K. J., Comin-Anduix, B., Tumeh, P. C., Minasyan, A. et al., BRAF inhibitor vemurafenib improves the antitumor activity of adoptive cell immunotherapy. Cancer Res. 2012. 72: 3928-3937.
Meeth, K., Wang, J. X., Micevic, G., Damsky, W. and Bosenberg, M. W., The YUMM lines: a series of congenic mouse melanoma cell lines with defined genetic alterations. Pigment Cell Melanoma Res. 2016. 29: 590-597.
Guilliams, M., Dutertre, C.-A., Scott, C. L., McGovern, N., Sichien, D., Chakarov, S., Van Gassen, S. et al., Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity. 2016. 45: 669-684.
Conrad, C., Meller, S. and Gilliet, M., Plasmacytoid dendritic cells in the skin: to sense or not to sense nucleic acids. Semin. Immunol. 2009. 21: 101-109.
Baranska, A., Shawket, A., Jouve, M., Baratin, M., Malosse, C., Voluzan, O., Manh, T. P. V. et al., Unveiling skin macrophage dynamics explains both tattoo persistence and strenuous removal. J. Exp. Med. 2018. 215: 1115-1133.
Jakubzick, C., Gautier, E. L., Gibbings, S. L., Sojka, D. K., Schlitzer, A., Johnson, T. E., Ivanov, S. et al., Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity. 2013. 39: 599-610.
Yona, S., Kim, K. W., Wolf, Y., Mildner, A., Varol, D., Breker, M., Strauss-Ayali, D. et al., Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity. 2013. 38: 79-91.
Van Gassen, S., Callebaut, B., Van Helden, M. J., Lambrecht, B. N., Demeester, P., Dhaene, T. and Saeys, Y., FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data. Cytom. Part A. 2015. 87: 636-645.
Van Der Maaten, L. and Hinton, G., Visualizing data using t-SNE. J. Mach. Learn. Res. 2008. 9: 2579-2605.
McInnes, L., Healy, J. and Melville, J., UMAP: uniform manifold approximation and projection for dimension reduction. 2018.
Coillard, A. and Segura, E., Antigen presentation by mouse monocyte-derived cells: Re-evaluating the concept of monocyte-derived dendritic cells. Mol. Immunol. 2021. 135: 165-169.
Biburger, M., Trenkwald, I. and Nimmerjahn, F., Three blocks are not enough-Blocking of the murine IgG receptor FcγRIV is crucial for proper characterization of cells by FACS analysis. Eur. J. Immunol. 2015. 45: 2694-2697.
Amon, L., Lehmann, C. H. K., Baranska, A., Schoen, J., Heger, L. and Dudziak, D., Transcriptional control of dendritic cell development and functions. Int. Rev. Cell. Mol. Biol. 2019. 349: 55-151.
Amon, L., Hatscher, L., Heger, L., Dudziak, D. and Lehmann, C. H. K., Harnessing the complete repertoire of conventional dendritic cell functions for cancer immunotherapy. Pharmaceutics. 2020. 12: 663.
Crozat, K., Tamoutounour, S., Vu Manh, T. P., Fossum, E., Luche, H., Ardouin, L., Guilliams, M. et al., Cutting edge: expression of XCR1 defines mouse lymphoid-tissue resident and migratory dendritic cells of the CD8α+ type. J. Immunol. 2011. 187: 4411-4415.
Watchmaker, P. B., Lahl, K., Lee, M., Baumjohann, D., Morton, J., Kim, S. J., Zeng, R. et al., Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice. Nat. Immunol. 2014. 15: 98-108.
Bonnardel, J., Da Silva, C., Wagner, C., Bonifay, R., Chasson, L., Masse, M., Pollet, E. et al., Distribution, location, and transcriptional profile of Peyer's patch conventional DC subsets at steady state and under TLR7 ligand stimulation. Mucosal. Immunol. 2017. 10: 1412-1430.
Lehmann, C. H. K., Baranska, A., Heidkamp, G. F., Heger, L., Neubert, K., Luhr, J. J., Hoffmann, A. et al., DC subset-specific induction of T cell responses upon antigen uptake via Fcgamma receptors in vivo. J. Exp. Med. 2017. 214: 1509-1528.
Nimmerjahn, F., Bruhns, P., Horiuchi, K. and Ravetch, J. V., FcgammaRIV: a novel FcR with distinct IgG subclass specificity. Immunity. 2005. 23: 41-51.
Miller, J. C., Brown, B. D., Shay, T., Gautier, E. L., Jojic, V., Cohain, A., Pandey, G. et al., Deciphering the transcriptional network of the dendritic cell lineage. Nat. Immunol. 2012. 13: 888-899.
Leach, S. M., Gibbings, S. L., Tewari, A. D., Atif, S. M., Vestal, B., Danhorn, T., Janssen, W. J. et al., Human and mouse transcriptome profiling identifies cross-species homology in pulmonary and lymph node mononuclear phagocytes. Cell. Rep. 2020. 33: 108337.
Gautier, E. L., Shay, T., Miller, J., Greter, M., Jakubzick, C., Ivanov, S., Helft, J. et al., Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 2012. 13: 1118-1128.
Scott, C. L., Bain, C. C., Wright, P. B., Sichien, D., Kotarsky, K., Persson, E. K., Luda, K. et al., CCR2(+)CD103(-) intestinal dendritic cells develop from DC-committed precursors and induce interleukin-17 production by T cells. Mucosal. Immunol. 2015. 8: 327-339.
Allard, B., Panariti, A. and Martin, J. G., Alveolar macrophages in the resolution of inflammation, tissue repair, and tolerance to infection. Front. Immunol. 2018. 9.
Becher, B., Schlitzer, A., Chen, J., Mair, F., Sumatoh, H. R., Teng, K. W. W., Low, D. et al., High-dimensional analysis of the murine myeloid cell system. Nat. Immunol. 2014. 15: 1181-1189.
Merad, M., Sathe, P., Helft, J., Miller, J. and Mortha, A., The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 2013. 31: 563-604.
Banchereau, J. and Steinman, R. M., Dendritic cells and the control of immunity. Nature. 1998. 392: 245-252.
Lyons-Cohen, M. R., Thomas, S. Y., Cook, D. N. and Nakano, H., Precision-cut mouse lung slices to visualize live pulmonary dendritic cells. J. Vis. Exp. 2017.
Geurtsvankessel, C. H. and Lambrecht, B. N., Division of labor between dendritic cell subsets of the lung. Mucosal Immunology. 2008. 1: 442-450.
Edelson, B. T., Bradstreet, T. R., Hildner, K., Carrero, J. A., Frederick, K. E., Wumesh, K. C., Belizaire, R. et al., CD8α+ dendritic cells are an obligate cellular entry point for productive infection by listeria monocytogenes. Immunity. 2011. 35: 236-248.
Hildner, K., Edelson, B. T., Purtha, W. E., Diamond, M., Matsushita, H., Kohyama, M., Calderon, B. et al., Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science. 2008. 322: 1097-1100.
Dudziak, D., Kamphorst, A. O., Heidkamp, G. F., Buchholz, V. R., Trumpfheller, C., Yamazaki, S., Cheong, C. et al., Differential antigen processing by dendritic cell subsets in vivo. Science. 2007. 315: 107-111.
Schlitzer, A., McGovern, N., Teo, P., Zelante, T., Atarashi, K., Low, D., Ho, A. W. et al., IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity. 2013. 38: 970-983.
Tussiwand, R., Everts, B., Gary, N., Iwata, A., Bagaitkar, J., Wu, X., Wong, R. et al., Klf4 expression in conventional dendritic cells is required for T helper 2 cell responses. Immunity. 2015. 42: 916-928.
Lewis, K. L., Caton, M. L., Bogunovic, M., Greter, M., Grajkowska, L. T., Ng, D., Klinakis, A. et al., Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. 2011. 35: 780-791.
Persson, E. K., Uronen-Hansson, H., Semmrich, M., Rivollier, A., Hägerbrand, K., Marsal, J., Gudjonsson, S. et al., IRF4 transcription-factor-dependent CD103(+)CD11b(+) dendritic cells drive mucosal T helper 17 cell differentiation. 2013. 38: 958-969.
Satpathy, A. T., Briseño, C. G., Lee, J. S., Ng, D., Manieri, N. A., KC, W., Wu, X. et al., Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nat. Immunol. 2013. 14: 937-948.
Brown, C. C., Gudjonson, H., Pritykin, Y., Deep, D., Lavallee, V. P., Mendoza, A., Fromme, R. et al., Transcriptional basis of mouse and human dendritic cell heterogeneity. Cell. 2019. 179: 846-863.e824.
Kumamoto, Y., Linehan, M., Weinstein, J. S., Laidlaw, B. J., Craft, J. E. and Iwasaki, A., CD301b⁺ dermal dendritic cells drive T helper 2 cell-mediated immunity. 2013. 39: 733-743.
Becht, E., McInnes, L., Healy, J., Dutertre, C.-A., Kwok, I. W. H., Ng, L. G., Ginhoux, F. et al., Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 2019. 37: 38-44.
Lee, J., Boyce, S., Powers, J., Baer, C., Sassetti, C. M. and Behar, S. M., CD11cHi monocyte-derived macrophages are a major cellular compartment infected by Mycobacterium tuberculosis. PLoS Pathog. 2020. 16: e1008621.
Rauschmeier, R., Gustafsson, C., Reinhardt, A., N, A. G., Tortola, L., Cansever, D., Subramanian, S. et al., Bhlhe40 and Bhlhe41 transcription factors regulate alveolar macrophage self-renewal and identity. EMBO J. 2019. 38: e101233.
Auffray, C., Sieweke, M. H. and Geissmann, F., Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol. 2009. 27: 669-692.
Satpathy, A. T., KC, W., Albring, J. C., Edelson, B. T., Kretzer, N. M., Bhattacharya, D., Murphy, T. L. et al., Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J. Exp. Med. 2012. 209: 1135-1152.
Gao, Y., Nish, S. A., Jiang, R., Hou, L., Licona-Limón, P., Weinstein, J. S., Zhao, H. et al., Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells. 2013. 39: 722-732.
Ginhoux, F., Liu, K., Helft, J., Bogunovic, M., Greter, M., Hashimoto, D., Price, J. et al., The origin and development of nonlymphoid tissue CD103+ DCs. J. Exp. Med. 2009. 206: 3115-3130.
Fiedler, K. and Brunner, C., The role of transcription factors in the guidance of granulopoiesis. Am. J. Blood Res. 2012. 2: 57-65.
Steinman, R. M., Dendritic cells and the control of immunity: enhancing the efficiency of antigen presentation. Mt. Sinai J. Med. 2001. 68: 160-166.
Romani, N., Ratzinger, G., Pfaller, K., Salvenmoser, W., Stossel, H., Koch, F. and Stoitzner, P., Migration of dendritic cells into lymphatics-the Langerhans cell example: routes, regulation, and relevance. Int. Rev. Cytol. 2001. 207: 237-270.
Hovav, A. H., Mucosal and skin langerhans cells - nurture calls. Trends Immunol. 2018. 39: 788-800.
Capucha, T., Koren, N., Nassar, M., Heyman, O., Nir, T., Levy, M., Zilberman-Schapira, G. et al., Sequential BMP7/TGF-beta1 signaling and microbiota instruct mucosal Langerhans cell differentiation. J. Exp. Med. 2018. 215: 481-500.
Capucha, T., Mizraji, G., Segev, H., Blecher-Gonen, R., Winter, D., Khalaileh, A., Tabib, Y. et al., Distinct murine mucosal langerhans cell subsets develop from pre-dendritic cells and monocytes. Immunity. 2015. 43: 369-381.
Guilliams, M., Ginhoux, F., Jakubzick, C., Naik, S. H., Onai, N., Schraml, B. U., Segura, E. et al., Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol. 2014. 14: 571-578.
Schraml, B. U., van, B. J., Zelenay, S., Whitney, P. G., Filby, A., Acton, S. E., Rogers, N. C. et al., Genetic tracing via DNGR-1 expression history defines dendritic cells as a hematopoietic lineage. Cell. 2013. 154: 843-858.
Salei, N., Rambichler, S., Salvermoser, J., Papaioannou, N. E., Schuchert, R., Pakalniškytė, D., Li, N. et al., The kidney contains ontogenetically distinct dendritic cell and macrophage subtypes throughout development that differ in their inflammatory properties. J. Am. Soc. Nephrol. 2020. 31: 257-278.
Summers, K. M., Bush, S. J. and Hume, D. A., Network analysis of transcriptomic diversity amongst resident tissue macrophages and dendritic cells in the mouse mononuclear phagocyte system. Plos Biol. 2020. 18: e3000859.
Lever, J. M., Yang, Z., Boddu, R., Adedoyin, O. O., Guo, L., Joseph, R., Traylor, A. M. et al., Parabiosis reveals leukocyte dynamics in the kidney. Lab. Invest. 2017. 98: 391-402.
Lever, J. M., Hull, T. D., Boddu, R., Pepin, M. E., Black, L. M., Adedoyin, O. O., Yang, Z. et al., Resident macrophages reprogram toward a developmental state after acute kidney injury. JCI Insight. 2019. 4: 833.
Gottschalk, C. and Kurts, C., The debate about dendritic cells and macrophages in the kidney. Front. Immunol. 2015. 6: 435.
Ide, S., Yahara, Y., Kobayashi, Y., Strausser, S. A., Ide, K., Watwe, A., Xu-Vanpala, S. et al., Yolk-sac-derived macrophages progressively expand in the mouse kidney with age. eLife. 2020. 9: 929.
Salei, N., Ji, X., Pakalniškytė, D., Kuentzel, V., Rambichler, S., Li, N., Moser, M. et al., Selective depletion of a CD64-expressing phagocyte subset mediates protection against toxic kidney injury and failure. Proc. Natl. Acad. Sci. U.S.A. 2021. 118. https://doi.org/10.1073/pnas.2022311118.
Brähler, S., Zinselmeyer, B. H., Raju, S., Nitschke, M., Suleiman, H., Saunders, B. T., Johnson, M. W. et al., Opposing roles of dendritic cell subsets in experimental GN. J. Am. Soc. Nephrol. 2018. 29: 138-154.
Evers, B. D. G., Engel, D. R., Böhner, A. M. C., Tittel, A. P., Krause, T. A., Heuser, C., Garbi, N. et al., CD103+ kidney dendritic cells protect against crescentic GN by maintaining IL-10-producing regulatory T cells. Journal of the American Society of Nephrology : JASN. 2016. 27: 3368-3382.
Hitchcock, J. R., Hughes, K., Harris, O. B. and Watson, C. J., Dynamic architectural interplay between leucocytes and mammary epithelial cells. FEBS J. 2020. 287(2): 250-266.
Stewart, T. A., Hughes, K., Hume, D. A. and Davis, F. M., Developmental stage-specific distribution of macrophages in mouse mammary gland. Front. Cell. Dev. Biol. 2019. 7: 250.
Steinman, R. M., Decisions about dendritic cells: past, present, and future. Annu. Rev. Immunol. 2012. 30: 1-22.
Steinman, R. M. and Hemmi, H., Dendritic cells: translating innate to adaptive immunity. Curr. Top. Microbiol. Immunol. 2006. 311: 17-58.
Böttcher, J. P. and Reis e Sousa, C., The role of type 1 conventional dendritic cells in cancer immunity. Trends Cancer. 2018. 4: 784-792.
Guilliams, M., Henri, S., Tamoutounour, S., Ardouin, L., Schwartz-Cornil, I., Dalod, M. and Malissen, B., From skin dendritic cells to a simplified classification of human and mouse dendritic cell subsets. Eur. J. Immunol. 2010. 40: 2089-2094.
Durai, V. and Murphy, K. M., Functions of murine dendritic cells. Immunity. 2016. 45: 719-736.
Murphy, T. L., Grajales-Reyes, G. E., Wu, X., Tussiwand, R., Briseño, C. G., Iwata, A., Kretzer, N. M. et al., Transcriptional control of dendritic cell development. Annu. Rev. Immunol. 2016. 34: 93-119.
Bachem, A., Hartung, E., Güttler, S., Mora, A., Zhou, X., Hegemann, A., Plantinga, M. et al., Expression of XCR1 characterizes the Batf3-dependent lineage of dendritic cells capable of antigen cross-presentation. Front. Immunol. 2012. 3: 214.
Broz, M. L., Binnewies, M., Boldajipour, B., Nelson, A. E., Pollack, J. L., Erle, D. J., Barczak, A. et al., Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell. 2014. 26: 638-652.
Salmon, H., Idoyaga, J., Rahman, A., Leboeuf, M., Remark, R., Jordan, S., Casanova-Acebes, M. et al., Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity. 2016. 44: 924-938.
Spranger, S., Dai, D., Horton, B. and Gajewski, T. F., Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell. 2017. 31: 711-723.e714.
Malissen, B., Tamoutounour, S. and Henri, S., The origins and functions of dendritic cells and macrophages in the skin. Nat. Rev. Immunol. 2014. 14: 417-428.
Wade, C. G., Rhyne, R. H., Jr., Woodruff, W. H., Bloch, D. P. and Bartholomew, J. C., Spectra of cells in flow cytometry using a vidicon detector. J Histochem. Cytochem. 1979. 27: 1049-1052.
Gauci, M. R., Vesey, G., Narai, J., Veal, D., Williams, K. L. and Piper, J. A., Observation of single-cell fluorescence spectra in laser flow cytometry. Cytometry. 1996. 25: 388-393.
Nolan, J. P. and Condello, D., Spectral flow cytometry. Curr Protoc Cytom 2013. Chapter 1: Unit1.27.
Chen, D. S. and Mellman, I., Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013. 39: 1-10.
Hornsteiner, F., Sykora, M. M., Tripp, C. H., Sopper, S. and Stoitzner, P., Mouse dendritic cells and other myeloid subtypes in healthy lymph nodes and skin: 26-Color flow cytometry panel for immune phenotyping. Eur. J. Immunol. 2022. 52: 2006-2009.
معلومات مُعتمدة: DOC 82 Austria FWF_ Austrian Science Fund FWF
فهرسة مساهمة: Keywords: Dendritic cells; Discrimination of dendritic cell subsets; Mouse nonlymphoid tissue; Multiplex flow cytometry analysis; Tissue digestion protocols
تواريخ الأحداث: Date Created: 20221213 Date Completed: 20231102 Latest Revision: 20240501
رمز التحديث: 20240501
DOI: 10.1002/eji.202249819
PMID: 36512638
قاعدة البيانات: MEDLINE
الوصف
تدمد:1521-4141
DOI:10.1002/eji.202249819