دورية أكاديمية

Aging reduces ABHD5 protein content in the adipose tissue of mice: The reversal effect of exercise.

التفاصيل البيبلوغرافية
العنوان: Aging reduces ABHD5 protein content in the adipose tissue of mice: The reversal effect of exercise.
المؤلفون: Brícola RS; Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil., Cordeiro AV; Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil., Crisol BM; Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil., Braga RR; Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil., de Melo DG; Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil., Rocha MB; Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil., Gaspar RC; Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil., Nakandakari SCBR; Laboratory of Nutritional Genomics (LabGeN), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil., Silva VRR; Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil., Anaruma CP; Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil., Katashima CK; Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil., Canciglieri RDS; Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil., Munõz VR; Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil., Pavan ICB; Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, State University of Campinas, Limeira, São Paulo, Brazil., Pinto AP; Ribeirão Preto Medical School, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil., Simabuco FM; Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, State University of Campinas, Limeira, São Paulo, Brazil., Silva ASRD; Ribeirão Preto Medical School, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil., Moura LP; Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil.; CEPECE-Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil., Pauli JR; Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil.; CEPECE-Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.; Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo, Brazil., Cintra DE; Laboratory of Nutritional Genomics (LabGeN), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil.; Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo, Brazil., Ropelle ER; Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil.; CEPECE-Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.; Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo, Brazil.; Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
المصدر: Cell biochemistry and function [Cell Biochem Funct] 2023 Jan; Vol. 41 (1), pp. 128-137. Date of Electronic Publication: 2022 Dec 14.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: England NLM ID: 8305874 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1099-0844 (Electronic) Linking ISSN: 02636484 NLM ISO Abbreviation: Cell Biochem Funct Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford, England : Wiley-Blackwell
Original Publication: Guildford, Surrey : Butterworth Scientific Ltd., c1983-
مواضيع طبية MeSH: 1-Acylglycerol-3-Phosphate O-Acyltransferase*/genetics , 1-Acylglycerol-3-Phosphate O-Acyltransferase*/metabolism , Adipose Tissue*/enzymology , Aging*/metabolism , Lipolysis* , Exercise*, Adult ; Aged ; Animals ; Humans ; Mice ; Middle Aged ; Young Adult ; Hydrolases/genetics ; Hydrolases/metabolism
مستخلص: Dysfunction of the adipose tissue metabolism is considered as a significant hallmark of aging. It has been proposed that α-β hydrolase domain containing 5 (ABHD5) plays a critical role in the control of lipolysis. However, the role of ABHD5 in the control of lipolysis during aging or exercise is unknown. Here we combined the experimental mouse model with transcriptomic analyzes by using murine and human databases to explore the role of ABHD5 in the adipose tissue during aging and in response to exercise. Transcriptomic data revealed a downregulation of Abhd5 messenger RNA levels in the subcutaneous white adipose tissue (scWAT) over time in individuals from 20 to 69 years old. Aged mice displayed dramatic reduction of ABHD5 protein content and lipolytic-related proteins in the scWAT. Interestingly, 4 weeks of high-intensity interval training increased ABHD5 protein level and restored the lipolytic pathway in the scWAT of aged mice. Altogether, our findings demonstrated that aging affects ABHD5 content in the adipose tissue of mice and humans. Conversely, exercise increases ABHD5 activity, recovering the lipolytic activity in aged mice.
(© 2022 John Wiley & Sons Ltd.)
References: Zimmermann R, Lass A, Haemmerle G, Zechner R. Fate of fat: the role of adipose triglyceride lipase in lipolysis. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 2009;1791(6):494-500. doi:10.1016/j.bbalip.2008.10.005.
Granneman JG, Moore H-PH, Mottillo EP, Zhu Z. Functional interactions between Mldp (LSDP5) and Abhd5 in the control of intracellular lipid accumulation. J Biol Chem. 2009;284(5):3049-3057. doi:10.1074/jbc.M808251200.
Sanders MA, Madoux F, Mladenovic L, et al. Endogenous and synthetic ABHD5 ligands regulate ABHD5-Perilipin interactions and lipolysis in fat and muscle. Cell Metab. 2015;22(5):851-860. doi:10.1016/j.cmet.2015.08.023.
Brown, AL, Mark Brown J. Critical roles for α/β hydrolase domain 5 (ABHD5)/comparative gene identification-58 (CGI-58) at the lipid droplet interface and beyond. In Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids. (Vol. 1862, Issue 10, pp. 1233-1241). Elsevier B.V. doi:10.1016/j.bbalip.2017.07.016.
Cerk IK, Wechselberger L, Oberer M. Adipose triglyceride lipase regulation: an overview. Curr Protein Pept Sci. 2018;19(2):221-233. doi:10.2174/1389203718666170918160110.
Kahn CR, Wang G, Lee KY. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J Clin Invest. 2019;129(10):3990-4000. doi:10.1172/JCI129187.
Arner P, Bernard S, Appelsved L, et al. Adipose lipid turnover and long-term changes in body weight. Nature Med. 2019;25(9):1385-1389. doi:10.1038/s41591-019-0565-5.
Bonzón-Kulichenko E, Moltó E, Pintado C, et al. Changes in visceral adipose tissue plasma membrane lipid composition in old rats are associated with adipocyte hypertrophy with aging. The Journals of Gerontology: Series A. 2018;73(9):1139-1146. doi:10.1093/gerona/gly081.
Camell CD, Günther P, Lee A, et al. Aging induces an Nlrp3 inflammasome-dependent expansion of adipose B cells that impairs metabolic homeostasis. Cell Metab. 2019;30(0):1024-1039.e6. doi:10.1016/j.cmet.2019.10.006.
Camell CD, Sander J, Spadaro O, et al. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature. 2017;550(7674):119-123. doi:10.1038/nature24022.
Lönnqvist F, Nyberg B, Wahrenberg H, Arner P. Catecholamine-induced lipolysis in adipose tissue of the elderly. J Clin Invest. 1990;85(5):1614-1621. doi:10.1172/JCI114612.
Tsiloulis T, Watt MJ. Exercise and the regulation of adipose tissue metabolism. Prog Mol Biol Transl Sci. 2015;135:175-201. doi:10.1016/bs.pmbts.2015.06.016.
Maillard F, Pereira B, Boisseau N. Effect of high-intensity interval training on total, abdominal and visceral fat mass: a meta-analysis. Sports Med. 2018;48(2):269-288. doi:10.1007/s40279-017-0807-y.
Viana RB, Naves JPA, Coswig VS, et al. Is interval training the magic bullet for fat loss? A systematic review and meta-analysis comparing moderate-intensity continuous training with high-intensity interval training (HIIT). In British Journal of Sports Medicine. (Vol. 53, Issue 10, pp. 655-664). BMJ Publishing Group. doi:10.1136/bjsports-2018-099928.
Ferreira JC, Rolim NP, Bartholomeu JB, Gobatto CA, Kokubun E, Brum PC. Maximal lactate steady state in running mice: effect of exercise training. Clin Exp Pharmacol Physiol. 2007;34(8):760-765. doi:10.1111/j.1440-1681.2007.04635.x.
Hafstad AD, Lund J, Hadler-Olsen E, Höper AC, Larsen TS, Aasum E. High- and moderate-intensity training normalizes ventricular function and mechanoenergetics in mice with diet-induced obesity. Diabetes. 2013;62(7):2287-2294. doi:10.2337/db12-1580.
Lund J, Hafstad AD, Boardman NT, et al. Exercise training promotes cardioprotection through oxygen-sparing action in high fat-fed mice. Am J Physiol Heart Circ Physiol. 2015;308(8):H823-H829. doi:10.1152/ajpheart.00734.2014.
Walker JM, Walker JM. The bicinchoninic acid (BCA) assay for protein quantitation. In Basic Protein and Peptide Protocols. Humana Press; 2003:5-8. doi:10.1385/0-89603-268-x:5.
Crisol BM, Veiga CB, Braga RR, et al. NAD+ precursor increases aerobic performance in mice. Eur J Nutr. 2019;59:2427-2437. doi:10.1007/s00394-019-02089-z.
Williams EG, Wu Y, Jha P, et al. Systems proteomics of liver mitochondria function. Science. 2016;352(6291):aad0189. doi:10.1126/science.aad0189.
Lonsdale J, Thomas J, Salvatore M, et al. The genotype-tissue expression (GTEx) project. Nature Genet. 2013;45(6):580-585. doi:10.1038/ng.2653.
Andreux PA, Williams EG, Koutnikova H, et al. Systems genetics of metabolism: the use of the BXD murine reference panel for multiscalar integration of traits. Cell. 2012;150(6):1287-1299. doi:10.1016/j.cell.2012.08.012.
Sanders MA, Zhang H, Mladenovic L, Tseng YY, Granneman JG. Molecular basis of ABHD5 lipolysis activation. Sci Rep. 2017;7:42589. doi:10.1038/srep42589.
Mancuso P, Bouchard B. The impact of aging on adipose function and adipokine synthesis. Front Endocrinol. 2019;10(MAR):1-12. doi:10.3389/fendo.2019.00137.
Garg A, Agarwal AK. Lipodystrophies: disorders of adipose tissue biology. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 2009;1791(6):507-513. doi:10.1016/j.bbalip.2008.12.014.
Koster A, Stenholm S, Alley DE, et al. Body fat distribution and inflammation among obese older adults with and without metabolic syndrome. Obesity. 2010;18(12):2354-2361. doi:10.1038/oby.2010.86.
Tchkonia T, Morbeck DE, Von Zglinicki T, et al. Fat tissue, aging, and cellular senescence. Aging cell. 2010;9(5):667-684. doi:10.1111/j.1474-9726.2010.00608.x.
Mikkelsen UR, Agergaard J, Couppé C, et al. Skeletal muscle morphology and regulatory signalling in endurance-trained and sedentary individuals: the influence of ageing. Exp Geront. 2017;93:54-67. doi:10.1016/j.exger.2017.04.001.
Lehnig AC, Dewal RS, Baer LA, et al. Exercise training induces depot-specific adaptations to White and brown adipose tissue. IScience. 2019;11:425-439. doi:10.1016/j.isci.2018.12.033.
May FJ, Baer LA, Lehnig AC, et al. Lipidomic adaptations in White and brown adipose tissue in response to exercise demonstrate molecular species-specific remodeling. Cell Rep. 2017;18(6):1558-1572. doi:10.1016/j.celrep.2017.01.038.
Čížková T, Štěpán M, Daďová K, et al. Exercise training reduces inflammation of adipose tissue in the elderly: cross-sectional and randomized interventional trial. J Clin Endocrinol Metab. 2020;105:1-14. doi:10.1210/clinem/dgaa630.
Kumar MV, Moore RL, Scarpace PJ, Kumar MV, Moore RL, Scarpace PJ. Beta3-adrenergic regulation of leptin, food intake, and adiposity is impaired with age. Pflugers Arch. 1999;438(5):681-688.
Tchkonia T, Thomou T, Zhu Y, et al. Mechanisms and metabolic implications of regional differences among fat depots. In Cell Metabolism (Vol. 17, Issue 5, pp. 644-656). NIH Public Access. doi:10.1016/j.cmet.2013.03.008.
Andreato LV, Esteves JV, Coimbra DR, Moraes AJP, Carvalho T. The influence of high-intensity interval training on anthropometric variables of adults with overweight or obesity: a systematic review and network meta-analysis. Obesity Reviews. 2019;20(1):142-155. doi:10.1111/obr.12766.
Wang X, Li A, Raza SHA, et al. Transcription factors zeb1 and creb promote the transcription of bovine abhd5 gene. DNA Cell Biol. 2021;40(2):219-230. doi:10.1089/dna.2020.5994.
Chou CH, Lai SL, Chen CN, et al. IL-6 regulates Mcl-1L expression through the JAK/PI3K/Akt/CREB signaling pathway in hepatocytes: implication of an anti-apoptotic role during liver regeneration. PLoS One. 2013;8(6):e66268. doi:10.1371/journal.pone.0066268.
Vliora M, Grillo E, Corsini M, et al. Irisin regulates thermogenesis and lipolysis in 3T3-L1 adipocytes. Biochimica et Biophysica Acta (BBA) - General Subjects. 2022;1866(4):130085. doi:10.1016/J.BBAGEN.2022.130085.
معلومات مُعتمدة: 2019/21709-4 Fundação de Amparo à Pesquisa do Estado de São Paulo; 2019/11820-5 and 2018/03122-3 Fundação de Amparo à Pesquisa do Estado de São Paulo; 310604/2020-6 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
فهرسة مساهمة: Keywords: ABHD5; adipose tissue; aging; physical exercise and lipolysis
المشرفين على المادة: EC 2.3.1.51 (1-Acylglycerol-3-Phosphate O-Acyltransferase)
EC 2.3.1.51 (ABHD5 protein, human)
EC 3.- (Hydrolases)
EC 2.3.1.51 (Abhd5 protein, mouse)
تواريخ الأحداث: Date Created: 20221214 Date Completed: 20230203 Latest Revision: 20230203
رمز التحديث: 20240628
DOI: 10.1002/cbf.3770
PMID: 36515301
قاعدة البيانات: MEDLINE