دورية أكاديمية

Toward generalizing the use of artificial intelligence in nephrology and kidney transplantation.

التفاصيل البيبلوغرافية
العنوان: Toward generalizing the use of artificial intelligence in nephrology and kidney transplantation.
المؤلفون: Badrouchi S; Department of Internal Medicine A, Charles Nicolle Hospital, Tunis, Tunisia. samarra.nephro@gmail.com.; Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia. samarra.nephro@gmail.com., Bacha MM; Department of Internal Medicine A, Charles Nicolle Hospital, Tunis, Tunisia.; Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia.; Laboratory of Kidney Transplantation Immunology and Immunopathology (LR03SP01), Charles Nicolle Hospital, Tunis, Tunisia., Hedri H; Department of Internal Medicine A, Charles Nicolle Hospital, Tunis, Tunisia.; Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia., Ben Abdallah T; Department of Internal Medicine A, Charles Nicolle Hospital, Tunis, Tunisia.; Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia.; Laboratory of Kidney Transplantation Immunology and Immunopathology (LR03SP01), Charles Nicolle Hospital, Tunis, Tunisia., Abderrahim E; Department of Internal Medicine A, Charles Nicolle Hospital, Tunis, Tunisia.; Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia.
المصدر: Journal of nephrology [J Nephrol] 2023 May; Vol. 36 (4), pp. 1087-1100. Date of Electronic Publication: 2022 Dec 22.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Italy NLM ID: 9012268 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1724-6059 (Electronic) Linking ISSN: 11218428 NLM ISO Abbreviation: J Nephrol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2014- : Heidelberg : Springer
Original Publication: Rome : Acta Medica,
مواضيع طبية MeSH: Nephrology* , Kidney Transplantation*, Humans ; Artificial Intelligence ; Nephrologists ; Clinical Decision-Making
مستخلص: With its robust ability to integrate and learn from large sets of clinical data, artificial intelligence (AI) can now play a role in diagnosis, clinical decision making, and personalized medicine. It is probably the natural progression of traditional statistical techniques. Currently, there are many unmet needs in nephrology and, more particularly, in the kidney transplantation (KT) field. The complexity and increase in the amount of data, and the multitude of nephrology registries worldwide have enabled the explosive use of AI within the field. Nephrologists in many countries are already at the center of experiments and advances in this cutting-edge technology and our aim is to generalize the use of AI among nephrologists worldwide. In this paper, we provide an overview of AI from a medical perspective. We cover the core concepts of AI relevant to the practicing nephrologist in a consistent and simple way to help them get started, and we discuss the technical challenges. Finally, we focus on the KT field: the unmet needs and the potential role that AI can play to fill these gaps, then we summarize the published KT-related studies, including predictive factors used in each study, which will allow researchers to quickly focus on the most relevant issues.
(© 2022. The Author(s) under exclusive licence to Italian Society of Nephrology.)
References: Kaya O, Schildbach J, AG DB, Schneider S (2019) Artificial intelligence in banking. Artif Intell.
Kanika K, Priyanka P, Latika L, Kumar D (2019) Artificial intelligence... Application in Agriculture.
Gómez-González E, Gomez E, Márquez-Rivas J, Guerrero-Claro M, Fernández-Lizaranzu I, Relimpio-López MI et al. (2020) Artificial intelligence in medicine and healthcare: a review and classification of current and near-future applications and their ethical and social Impact. arXiv Prepr arXiv200109778.
Caselli M, Fracasso A, Traverso S (2021) Robots and risk of COVID-19 workplace contagion: evidence from Italy. Technol Forecast Soc Change 173:121097. Available from: https://www.sciencedirect.com/science/article/pii/S0040162521005308.
Fishel JA, Oliver T, Eichermueller M, Barbieri G, Fowler E, Hartikainen T et al. (2020) Tactile telerobots for dull, dirty, dangerous, and inaccessible tasks. In: 2020 IEEE International Conference on Robotics and Automation (ICRA). pp 11305–10.
Benjamens S, Dhunnoo P, Meskó B (2020) The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. Npj Digit Med 3(1):118. https://doi.org/10.1038/s41746-020-00324-0. (PMID: 10.1038/s41746-020-00324-0329845507486909)
United States Food & Drug Administration (2019) Proposed regulatory framework for modifications to artificial intelligence / machine learning (AI/ML)—based software as a medical device (SaMD)—discussion paper and request for feedback. US Food Drug Adm [Internet]. pp 1–20. Available from: https://www.fda.gov/media/122535/download.
Mori Y, Neumann H, Misawa M, Kudo SE, Bretthauer M (2020) Artificial intelligence in colonoscopy: now on the market. What’s next? J Gastroenterol Hepatol 36:7–11. (PMID: 10.1111/jgh.15339)
Thishya K, Vattam KK, Naushad SM, Raju SB, Kutala VK (2018) Artificial neural network model for predicting the bioavailability of tacrolimus in patients with renal transplantation. PLoS ONE 13(4):e0191921. https://doi.org/10.1371/journal.pone.0191921. (PMID: 10.1371/journal.pone.0191921296212695886400)
Senanayake S, White N, Graves N, Healy H, Baboolal K, Kularatna S (2019) Machine learning in predicting graft failure following kidney transplantation: a systematic review of published predictive models. Int J Med Inform 130:103957. http://www.sciencedirect.com/science/article/pii/S1386505619302977.
Sekercioglu N, Fu R, Kim SJ, Mitsakakis N (2021) Machine learning for predicting long-term kidney allograft survival: a scoping review. Irish J Med Sci 190(2):807–817. https://doi.org/10.1007/s11845-020-02332-1. (PMID: 10.1007/s11845-020-02332-132761550)
Paranjape K, Schinkel M, Nannan Panday R, Car J, Nanayakkara P (2019) Introducing artificial intelligence training in medical education. JMIR Med Educ 5(2):e16048. https://pubmed.ncbi.nlm.nih.gov/31793895.
Zulkarnain N, Anshari M (2016) Big data: concept, applications, and challenges. In: 2016 International Conference on Information Management and Technology (ICIMTech). pp 307–10.
Hamet P, Tremblay J (2017) Artificial intelligence in medicine. Metabolism 69:S36–40. http://www.sciencedirect.com/science/article/pii/S002604951730015X.
Niel O, Bastard P (2019) Artificial intelligence in nephrology: core concepts, clinical applications, and perspectives. Am J Kidney Dis 74(6):803–810. https://doi.org/10.1053/j.ajkd.2019.05.020. (PMID: 10.1053/j.ajkd.2019.05.02031451330)
Loupy A, Mengel M, Haas M (2022) Thirty years of the international banff classification for allograft pathology: the past, present, and future of kidney transplant diagnostics. Kidney Int 101(4):678–691. https://doi.org/10.1016/j.kint.2021.11.028. (PMID: 10.1016/j.kint.2021.11.02834922989)
Roufosse C, Simmonds N, Clahsen-van Groningen M, Haas M, Henriksen KJ, Horsfield C, et al (2018) A 2018 reference guide to the Banff classification of renal Allograft pathology. Transplantation 102(11):1795–814. https://pubmed.ncbi.nlm.nih.gov/30028786.
Farris AB, Vizcarra J, Amgad M, Donald Cooper LA, Gutman D, Hogan J (2021) Image analysis pipeline for renal allograft evaluation and fibrosis quantification. Kidney Int reports [Internet]. 6(7):1878–87. https://pubmed.ncbi.nlm.nih.gov/34307982.
Badrouchi S, Ahmed A, Mongi Bacha M, Abderrahim E, Ben Abdallah T (2021) A machine learning framework for predicting long-term graft survival after kidney transplantation. Expert Syst Appl [Internet]. 182:115235. https://www.sciencedirect.com/science/article/pii/S0957417421006679.
Van Loon E, Zhang W, Coemans M, De Vos M, Emonds M-P, Scheffner I et al (2021) Forecasting of patient-specific kidney transplant function with a sequence-to-sequence deep learning model. JAMA Netw Open 4(12):e2141617. https://doi.org/10.1001/jamanetworkopen.2021.41617. (PMID: 10.1001/jamanetworkopen.2021.41617349678778719239)
Kers J, Bülow RD, Klinkhammer BM, Breimer GE, Fontana F, Abiola AA et al (2022) Deep learning-based classification of kidney transplant pathology: a retrospective, multicentre, proof-of-concept study. Lancet Digit Heal 4(1):e18-26. https://doi.org/10.1016/S2589-7500(21)00211-9. (PMID: 10.1016/S2589-7500(21)00211-9)
Boenink R, Astley ME, Huijben JA, Stel VS, Kerschbaum J, Ots-Rosenberg M et al (2022) The ERA Registry Annual Report 2019: summary and age comparisons. Clin Kidney J 15(3):452–472. https://doi.org/10.1093/ckj/sfab273. (PMID: 10.1093/ckj/sfab27335211303)
Kruse CS, Goswamy R, Raval Y, Marawi S (2016) Challenges and opportunities of big data in health care: a systematic review. JMIR Med Inform. 4(4):e38. Available from: https://pubmed.ncbi.nlm.nih.gov/27872036.
Levey AS, Eckardt K-U, Tsukamoto Y, Levin A, Coresh J, Rossert J et al. (2005) Definition and classification of chronic kidney disease: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int 67(6):2089–100. https://www.sciencedirect.com/science/article/pii/S0085253815506984.
Loupy A, Aubert O, Orandi BJ, Naesens M, Bouatou Y, Raynaud M, et al. (2019) Prediction system for risk of allograft loss in patients receiving kidney transplants: international derivation and validation study. BMJ 366:l4923. http://www.bmj.com/content/366/bmj.l4923.abstract.
Al-Aly Z, Balasubramanian S, McDonald JR, Scherrer JF, O’Hare AM (2012) Greater variability in kidney function is associated with an increased risk of death. Kidney Int 82(11):1208–14. https://www.sciencedirect.com/science/article/pii/S0085253815554732.
Ma L, Gao J, Wang Y, Zhang C, Wang J, Ruan W et al (2020) AdaCare: explainable clinical health status representation learning via scale-adaptive feature extraction and recalibration. Proc AAAI Conf Artif Intell 3(34):825–832.
Mullainathan S, Spiess J (2017) Machine learning: an applied econometric approach. J Econ Perspect 31(2):87–106. (PMID: 10.1257/jep.31.2.87)
Passarelli G (2022) “Don’t Google It”: the effects of Google’s ads dominance for users and competitors. In: Marchisio E (ed) Handbook of research on applying emerging technologies across multiple disciplines [Internet]. IGI Global, Hershey, p. 333–51. Available from: https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-8476-7.ch019.
Inrig JK, Califf RM, Tasneem A, Vegunta RK, Molina C, Stanifer JW et al. (2014) The landscape of clinical trials in nephrology: a systematic review of Clinicaltrials.gov. Am J Kidney Dis 63(5):771–80. https://pubmed.ncbi.nlm.nih.gov/24315119.
Ehsani-Moghaddam B, Martin K, Queenan JA (2019) Data quality in healthcare: a report of practical experience with the Canadian Primary Care Sentinel Surveillance Network data. Heal Inf Manag J 50(1–2):88–92. https://doi.org/10.1177/1833358319887743. (PMID: 10.1177/1833358319887743)
Oni S, Chen Z, Hoban S, Jademi O (2019) A comparative study of data cleaning tools. Int J Data Warehous Min 15(4):48–65. (PMID: 10.4018/IJDWM.2019100103)
Ma L, Zhang C, Wang Y, Ruan W, Wang J, Tang W, et al (2020) Concare: personalized clinical feature embedding via capturing the healthcare context. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 833–40.
Ma L, Ma X, Gao J, Jiao X, Yu Z, Zhang C et al. (2021) Distilling knowledge from publicly available online EMR data to emerging epidemic for prognosis, pp 3558–3568.
Yoo KD, Noh J, Lee H, Kim DK, Lim CS, Kim YH et al (2017) A machine learning approach using survival statistics to predict graft survival in kidney transplant recipients: a multicenter cohort study. Sci Rep 7(1):1–12. https://doi.org/10.1038/s41598-017-08008-8. (PMID: 10.1038/s41598-017-08008-8)
Ibrahim SA, Pronovost PJ (2021) Diagnostic errors, health disparities, and artificial intelligence: a combination for health or harm? JAMA Heal Forum. 2(9):e212430. https://doi.org/10.1001/jamahealthforum.2021.2430. (PMID: 10.1001/jamahealthforum.2021.2430)
Vellido A (2020) The importance of interpretability and visualization in machine learning for applications in medicine and health care. Neural Comput Appl 32(24):18069–18083. https://doi.org/10.1007/s00521-019-04051-w. (PMID: 10.1007/s00521-019-04051-w)
Pastorino R, De Vito C, Migliara G, Glocker K, Binenbaum I, Ricciardi W et al. (2019) Benefits and challenges of big data in healthcare: an overview of the European initiatives. Eur J Public Health [Internet]. 29(Supplement_3):23–7. https://pubmed.ncbi.nlm.nih.gov/31738444.
Coemans M, Süsal C, Döhler B, Anglicheau D, Giral M, Bestard O et al (2018) Analyses of the short- and long-term graft survival after kidney transplantation in Europe between 1986 and 2015. Kidney Int 94(5):964–973. https://doi.org/10.1016/j.kint.2018.05.018. (PMID: 10.1016/j.kint.2018.05.01830049474)
Meier-Kriesche H-U, Schold JD, Srinivas TR, Kaplan B (2004) Lack of improvement in renal allograft survival despite a marked decrease in acute rejection rates over the most recent era. Am J Transplant 4(3):378–383. (PMID: 10.1111/j.1600-6143.2004.00332.x14961990)
Rana A, Godfrey EL (2019) Outcomes in solid-organ transplantation: success and stagnation. Texas Hear Inst J 46(1):75–6. https://pubmed.ncbi.nlm.nih.gov/30833851.
Schröppel B, Legendre C (2014) Delayed kidney graft function: from mechanism to translation. Kidney Int 86(2):251–258. https://doi.org/10.1038/ki.2014.18. (PMID: 10.1038/ki.2014.1824522494)
Gorayeb-Polacchini FS, Caldas HC, Fernandes-Charpiot IMM, Ferreira-Baptista MAS, Gauch CR, Abbud-Filho M (2020) Impact of cold ischemia time on kidney transplant: a mate kidney analysis. Transplant Proc 52(5):1269–71. https://www.sciencedirect.com/science/article/pii/S0041134519314083.
Halloran PF, Hunsicker LG (2001) Delayed graft function: state of the art, November 10–11, 2000. Summit Meeting, Scottsdale, Arizona, USA. Am J Transplant 1(2):115–20. https://doi.org/10.1034/j.1600-6143.2001.10204.x.
Koo EH, Jang HR, Lee JE, Park JB, Kim S-J, Kim DJ et al (2015) The impact of early and late acute rejection on graft survival in renal transplantation. Kidney Res Clin Pract 34(3):160–4. https://pubmed.ncbi.nlm.nih.gov/26484041.
Jalalzadeh M, Mousavinasab N, Peyrovi S, Ghadiani MH (2015) The impact of acute rejection in kidney transplantation on long-term allograft and patient outcome. Nephrourol Mon 7(1):e24439 https://pubmed.ncbi.nlm.nih.gov/25738128.
Pallardó Mateu LM, Sancho Calabuig A, Capdevila Plaza L, Franco EA (2004) Acute rejection and late renal transplant failure: risk factors and prognosis. Nephrol Dial Transplant 19(Suppl 3):iii38-42. (PMID: 15192134)
Archdeacon P, Chan M, Neuland C, Velidedeoglu E, Meyer J, Tracy L et al (2011) Summary of FDA antibody-mediated rejection workshop. Am J Transplant 1(11):896–906. (PMID: 10.1111/j.1600-6143.2011.03525.x)
Velidedeoglu E, Cavaillé-Coll MW, Bala S, Belen OA, Wang Y, Albrecht R (2018) Summary of 2017 FDA Public Workshop: Antibody-mediated Rejection in Kidney Transplantation. Transplantation 102(6). https://journals.lww.com/transplantjournal/Fulltext/2018/06000/Summary_of_2017_FDA_Public_Workshop_.15.aspx.
Aubert O, Divard G, Pascual J, Oppenheimer F, Sommerer C, Citterio F et al. (2021) Application of the iBox prognostication system as a surrogate endpoint in the TRANSFORM randomised controlled trial: proof-of-concept study. BMJ Open [Internet]. 11(10):e052138. http://bmjopen.bmj.com/content/11/10/e052138.abstract.
Shaikhina T, Lowe D, Daga S, Briggs D, Higgins R, Khovanova N (2019) Decision tree and random forest models for outcome prediction in antibody incompatible kidney transplantation. Biomed Signal Process Control 52:456–62. http://www.sciencedirect.com/science/article/pii/S1746809417300204.
Rush DN (2020) Subclinical rejection: a universally held concept? Curr Transplant Rep 7(3):163–168. https://doi.org/10.1007/s40472-020-00290-2. (PMID: 10.1007/s40472-020-00290-2)
Legendre C, Canaud G, Martinez F (2014) Factors influencing long-term outcome after kidney transplantation. Transpl Int 27(1):19–27. (PMID: 10.1111/tri.1221724138291)
Brown TS, Brown TS, Elster EA, Stevens K, Graybill JC, Gillern S et al. (2012) Bayesian modeling of pretransplant variables accurately predicts kidney graft survival. Am J Nephrol 36(6):561–9. https://www.karger.com/DOI/ https://doi.org/10.1159/000345552.
Lin RS, Horn SD, Hurdle JF, Goldfarb-Rumyantzev AS (2008) Single and multiple time-point prediction models in kidney transplant outcomes. J Biomed Inform 41(6):944–52. http://www.sciencedirect.com/science/article/pii/S1532046408000439.
Stegall MD, Morris RE, Alloway RR, Mannon RB (2016) Developing new immunosuppression for the next generation of transplant recipients: the path forward. Am J Transplant 16(4):1094–1101. (PMID: 10.1111/ajt.1358226730885)
Jen K-Y, Albahra S, Yen F, Sageshima J, Chen L-X, Tran N et al. (2021) Automated en masse machine learning model generation shows comparable performance as classic regression models for predicting delayed graft function in renal allografts. Transplantation 105(12). https://journals.lww.com/transplantjournal/Fulltext/2021/12000/Automated_En_Masse_Machine_Learning_Model.38.aspx.
Konieczny A, Stojanowski J, Rydzyńska K, Kusztal M, Krajewska M (2021) Artificial intelligence-a tool for risk assessment of delayed-graft function in kidney transplant. J Clin Med 10(22):5244. https://pubmed.ncbi.nlm.nih.gov/34830526.
Bae S, Massie AB, Caffo BS, Jackson KR, Segev DL (2020) Machine learning to predict transplant outcomes: helpful or hype? A national cohort study. Transpl Int 33(11):1472–1480. https://doi.org/10.1111/tri.13695. (PMID: 10.1111/tri.1369532996170)
Kawakita S, Beaumont JL, Jucaud V, Everly MJ (2020) Personalized prediction of delayed graft function for recipients of deceased donor kidney transplants with machine learning. Sci Rep 10(1):18409. https://doi.org/10.1038/s41598-020-75473-z. (PMID: 10.1038/s41598-020-75473-z331101427591492)
Costa SD, de Andrade LGM, Barroso FVC, de Oliveira CMC, Daher EDF, Fernandes PFCBC et al (2020) The impact of deceased donor maintenance on delayed kidney allograft function: a machine learning analysis. PLoS ONE 15(2):e0228597. https://doi.org/10.1371/journal.pone.0228597. (PMID: 10.1371/journal.pone.0228597320277177004552)
Decruyenaere A, Decruyenaere P, Peeters P, Vermassen F, Dhaene T, Couckuyt I (2015) Prediction of delayed graft function after kidney transplantation: comparison between logistic regression and machine learning methods. BMC Med Inform Decis Mak 15:83. https://pubmed.ncbi.nlm.nih.gov/26466993.
Li J, Serpen G, Selman S, Franchetti M, Riesen M, Schneider C (2010) Bayes net classifiers for prediction of renal graft status and survival period. World Acad Sci Eng Technol 1(63):144–150.
Brier ME, Ray PC, Klein JB (2003) Prediction of delayed renal allograft function using an artificial neural network. Nephrol Dial Transplant 18(12):2655–2659. https://doi.org/10.1093/ndt/gfg439. (PMID: 10.1093/ndt/gfg43914605292)
Shoskes DA, Ty R, Barba L, Sender M (1998) Prediction of early graft function in renal transplantation using a computer neural network. Transplant Proc 30(4):1316–7. https://www.sciencedirect.com/science/article/pii/S0041134598002577.
Tapak L, Hamidi O, Amini P, Poorolajal J (2017) Prediction of kidney graft rejection using artificial neural network. Heal Inf Res 23(4):277–284. https://doi.org/10.4258/hir.2017.23.4.277. (PMID: 10.4258/hir.2017.23.4.277)
Esteban C, Staeck O, Baier S, Yang Y, Tresp V (2016) Predicting clinical events by combining static and dynamic information using recurrent neural networks, pp 93–101.
Hummel AD, Maciel RF, Rodrigues RGS, Pisa IT (2010) Application of artificial neural networks in renal transplantation: classification of nephrotoxicity and acute cellular rejection episodes. Transplant Proc 42(2):471–2. https://www.sciencedirect.com/science/article/pii/S0041134510001429.
Petrovsky N, Tam SK, Brusic V, Russ GR, Socha LA, Bajic VB (2002) Use of artificial neural networks in improving renal transplantation outcomes. Graft 5:6–13.
Abdolmaleki P, Movhead M, Taniguchi R-I, Masuda K, Buadu LD (1997) Evaluation of complications of kidney transplantation using artificial neural networks. Nucl Med Commun 18(7). https://journals.lww.com/nuclearmedicinecomm/Fulltext/1997/07000/Evaluation_of_complications_of_kidney.5.aspx.
Nematollahi M, Akbari R, Nikeghbalian S, Salehnasab C (2017) Classification models to predict survival of kidney transplant recipients using two intelligent techniques of data mining and logistic regression. Int J organ Transplant Med 8(2):119–22. https://pubmed.ncbi.nlm.nih.gov/28959387.
Bashiri A, Ghazisaeedi M, Safdari R, Shahmoradi L, Ehtesham H (2017) Improving the prediction of survival in cancer patients by using machine learning techniques: experience of gene expression data: a narrative review. Iran J Public Health 46(2):165–72. Available from: https://pubmed.ncbi.nlm.nih.gov/28451550.
Lofaro D, Maestripieri S, Greco R, Papalia T, Mancuso D, Conforti D et al. (2010) Prediction of chronic allograft nephropathy using classification trees. Transplant Proc 42(4):1130–3. http://europepmc.org/abstract/MED/20534242.
Greco R, Papalia T, Lofaro D, Maestripieri S, Mancuso D, Bonofiglio R (2010) Decisional trees in renal transplant follow-up. Transplant Proc 42(4):1134–6. http://www.sciencedirect.com/science/article/pii/S0041134510003490.
Akl A, Ismail AM, Ghoneim M (2008) Prediction of graft survival of living-donor kidney transplantation: nomograms or artificial neural networks? Transplantation 86(10). https://journals.lww.com/transplantjournal/Fulltext/2008/11270/Prediction_of_Graft_Survival_of_Living_Donor.12.aspx.
Krikov S, Khan A, Baird BC, Barenbaum LL, Leviatov A, Koford JK et al (2007) Predicting kidney transplant survival using tree-based modeling. ASAIO J 53(5):592–600. http://europepmc.org/abstract/MED/17885333.
فهرسة مساهمة: Keywords: Artificial intelligence; Kidney transplantation; Machine learning; Nephrology
تواريخ الأحداث: Date Created: 20221222 Date Completed: 20230531 Latest Revision: 20230601
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC9773693
DOI: 10.1007/s40620-022-01529-0
PMID: 36547773
قاعدة البيانات: MEDLINE
الوصف
تدمد:1724-6059
DOI:10.1007/s40620-022-01529-0