دورية أكاديمية

Guidelines for mouse and human DC functional assays.

التفاصيل البيبلوغرافية
العنوان: Guidelines for mouse and human DC functional assays.
المؤلفون: Clausen BE; Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany.; Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany., Amon L; Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany., Backer RA; Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany.; Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany., Berod L; Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany.; Institute of Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Germany., Bopp T; Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany.; Institute of Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany., Brand A; Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany., Burgdorf S; Laboratory of Cellular Immunology, LIMES Institute, University of Bonn, Bonn, Germany., Chen L; Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany., Da M; Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany., Distler U; Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany.; Institute of Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany., Dress RJ; Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany., Dudziak D; Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany.; Medical Immunology Campus Erlangen (MICE), Erlangen, Germany.; Deutsches Zentrum Immuntherapie (DZI), Germany., Dutertre CA; Gustave Roussy Cancer Campus, Villejuif, France.; Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France., Eich C; Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany., Gabele A; Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany.; Institute of Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany., Geiger M; Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany.; Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany., Ginhoux F; Gustave Roussy Cancer Campus, Villejuif, France.; Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.; Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore., Giusiano L; Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Germany., Godoy GJ; Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Germany., Hamouda AEI; Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany.; Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany., Hatscher L; Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany., Heger L; Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany., Heidkamp GF; Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany., Hernandez LC; Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany., Jacobi L; Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany., Kaszubowski T; Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany., Kong WT; Gustave Roussy Cancer Campus, Villejuif, France.; Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France., Lehmann CHK; Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany.; Medical Immunology Campus Erlangen (MICE), Erlangen, Germany.; Deutsches Zentrum Immuntherapie (DZI), Germany., López-López T; Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany., Mahnke K; Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany., Nitsche D; Laboratory of Cellular Immunology, LIMES Institute, University of Bonn, Bonn, Germany., Renkawitz J; Biomedical Center (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, LMU Munich, Munich, Germany., Reza RA; Biomedical Center (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, LMU Munich, Munich, Germany., Sáez PJ; Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany., Schlautmann L; Laboratory of Cellular Immunology, LIMES Institute, University of Bonn, Bonn, Germany., Schmitt MT; Biomedical Center (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, LMU Munich, Munich, Germany., Seichter A; Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany., Sielaff M; Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany.; Institute of Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany., Sparwasser T; Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany.; Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Germany., Stoitzner P; Department of Dermatology, Venerology & Allergology, Medical University Innsbruck, Innsbruck, Austria., Tchitashvili G; Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany., Tenzer S; Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany.; Institute of Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany.; Helmholtz Institute for Translational Oncology Mainz (HI-TRON Mainz), Mainz, Germany., Tochoedo NR; Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany., Vurnek D; Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany., Zink F; Laboratory of Cellular Immunology, LIMES Institute, University of Bonn, Bonn, Germany., Hieronymus T; Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany.; Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany.; Institute of Cell and Tumor Biology, RWTH Aachen University, Medical Faculty, Germany.
المصدر: European journal of immunology [Eur J Immunol] 2023 Dec; Vol. 53 (12), pp. e2249925. Date of Electronic Publication: 2022 Dec 23.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 1273201 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-4141 (Electronic) Linking ISSN: 00142980 NLM ISO Abbreviation: Eur J Immunol Subsets: MEDLINE
أسماء مطبوعة: Publication: <2005->: Weinheim : Wiley-VCH
Original Publication: Weinheim, Verlag Chemie GmbH.
مواضيع طبية MeSH: Proteomics* , Dendritic Cells*, Humans ; Flow Cytometry ; Gene Expression Profiling ; Cross-Priming
مستخلص: This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various non-lymphoid tissues. Recent studies have provided evidence for an increasing number of phenotypically distinct conventional DC (cDC) subsets that on one hand exhibit a certain functional plasticity, but on the other hand are characterized by their tissue- and context-dependent functional specialization. Here, we describe a selection of assays for the functional characterization of mouse and human cDC. The first two protocols illustrate analysis of cDC endocytosis and metabolism, followed by guidelines for transcriptomic and proteomic characterization of cDC populations. Then, a larger group of assays describes the characterization of cDC migration in vitro, ex vivo, and in vivo. The final guidelines measure cDC inflammasome and antigen (cross)-presentation activity. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.
(© 2022 The Authors. European Journal of Immunology published by Wiley-VCH GmbH.)
References: Amon, L., Lehmann, C. H. K., Baranska, A., Schoen, J., Heger, L. and Dudziak, D., Transcriptional control of dendritic cell development and functions. Int Rev Cell Mol Biol. 2019. 349: 55-151.
Dudziak, D., Kamphorst, A. O., Heidkamp, G. F., Buchholz, V. R., Trumpfheller, C., Yamazaki, S., Cheong, C. et al., Differential antigen processing by dendritic cell subsets in vivo. Science. 2007. 315: 107-111.
Lehmann, C. H. K., Baranska, A., Heidkamp, G. F., Heger, L., Neubert, K., Luhr, J. J., Hoffmann, A. et al., DC subset-specific induction of T cell responses upon antigen uptake via Fcgamma receptors in vivo. J. Exp. Med. 2017. 214: 1509-1528.
Heger, L., Balk, S., Luhr, J. J., Heidkamp, G. F., Lehmann, C. H. K., Hatscher, L., Purbojo, A. et al., CLEC10A Is a Specific Marker for Human CD1c(+) Dendritic Cells and Enhances Their Toll-Like Receptor 7/8-Induced Cytokine Secretion. Front. Immunol. 2018. 9: 744.
Liu, H. and Johnston, A. P., A programmable sensor to probe the internalization of proteins and nanoparticles in live cells. Angew. Chem. Int. Ed Engl. 2013;52:5744-5748.
Sonnichsen, B., De Renzis, S., Nielsen, E., Rietdorf, J. and Zerial, M., Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J. Cell Biol. 2000. 149: 901-914.
Mellman, I., Plutner, H. and Ukkonen, P., Internalization and rapid recycling of macrophage Fc receptors tagged with monovalent antireceptor antibody: possible role of a prelysosomal compartment. J. Cell Biol. 1984. 98: 1163-1169.
Reuter, A., Panozza, S. E., Macri, C., Dumont, C., Li, J., Liu, H., Segura, E. et al., Criteria for dendritic cell receptor selection for efficient antibody-targeted vaccination. J. Immunol. 2015. 194: 2696-2705.
Amon, L., Dudziak, D., Backer, R. A., Clausen, B. E., Gmeiner, C., Heger, L., Jacobi, L. et al., Guidelines for DC preparation and flow cytometry analysis of mouse lymphohematopoietic tissues. Eur. J. Immunol. 2023. 53: 2249893.
Minarrieta, L., Velasquez, L. N., Sparwasser, T. and Berod, L., Dendritic cell metabolism: moving beyond in vitro-culture-generated paradigms. Curr. Opin. Biotechnol. 2021. 68: 202-212.
Helft, J., Böttcher, J., Chakravarty, P., Zelenay, S., Huotari, J., Schraml, B., Goubau, D. et al., GM-CSF Mouse Bone Marrow Cultures Comprise a Heterogeneous Population of CD11c(+)MHCII(+) Macrophages and Dendritic Cells. Immunity. 2015. 42: 1197-1211.
Krawczyk, C. M., Holowka, T., Sun, J., Blagih, J., Amiel, E., DeBerardinis, R. J., Cross, J. R. et al., Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood. 2010. 115: 4742-4749.
Naik, S., Proietto, A., Wilson, N., Dakic, A., Schnorrer, P., Fuchsberger, M., Lahoud, M. et al., Cutting edge: generation of splenic CD8+ and CD8- dendritic cell equivalents in Fms-like tyrosine kinase 3 ligand bone marrow cultures. J. Immunol. 2005. 174: 6592-6597.
Divakaruni, A. S., Paradyse, A., Ferrick, D. A., Murphy, A. N. and Jastroch, M., Analysis and Interpretation of Microplate-Based Oxygen Consumption and pH Data. Methods Enzymol. 2014. 547: 309-354.
Nolfi-Donegan, D., Braganza, A. and Shiva, S., Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox. Biol. 2020. 37: 101674.
Mazzucotelli, C., Goñi, M. G., Roura, S. I., González-Aguilar, G. and Ayala-Zavala, J. F., Nitric oxide. Postharvest Manag. Approaches Maint. Qual. Fresh Prod. 2016. 169: 17-36.
Dress, R. J., Liu, Z. and Ginhoux, F., Towards the better understanding of myelopoiesis using single-cell technologies. Mol. Immunol. 2020. 122: 186-192.
Ginhoux, F., Yalin, A., Dutertre, C. A. and Amit, I., Single-cell immunology: Past, present, and future. Immunity. 2022. 55: 393-404.
Andrews, T. S., Kiselev, V. Y., McCarthy, D. and Hemberg, M., Tutorial: guidelines for the computational analysis of single-cell RNA sequencing data. Nat. Protoc. 2021. 16: 1-9.
Hie, B., Peters, J., Nyquist, S. K., Shalek, A. K., Berger, B. and Bryson, B D., Computational Methods for Single-Cell RNA Sequencing. Annu Rev Biomed Data Sci 2020. 3: 339-364.
Luecken, M. D. and Theis, F J., Current best practices in single-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol. 2019. 15: e8746.
Lotfollahi, M., Naghipourfar, M., Luecken, M. D., Khajavi, M., Büttner, M., Wagenstetter, M., Avsec, Ž. et al., Mapping single-cell data to reference atlases by transfer learning. Nat. Biotechnol. 2021.
Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W. M., Hao, Y. et al., Comprehensive Integration of Single-Cell Data. Cell. 2019. 177.
Browaeys, R., Saelens, W. and Saeys, Y., NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods. 2020. 17: 159-162.
Wolf, F. A., Angerer, P. and Theis, F. J., SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018. 19: 15.
Picelli, S., Faridani, O. R., Björklund, Å. K., Winberg, G., Sagasser, S. and Sandberg, R., Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 2014. 9: 171-181.
Cossarizza, A., Chang, H., Radbruch, A., Abrignani, S., Addo, R., Akdis, M., Andrä, I. et al., Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). Eur. J. Immunol. 2021. 51: 2708-3145.
Bo, L. and Dewey, C N., RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bionformatics. 2011. 12: 323.
Becht, E., McInnes, L., Healy, J., Dutertre, C. A., Kwok, I. W. H., Ng, L. G., Ginhoux, F. et al., Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 2019. 37: 38-44.
Mulder, K., Patel, A. A., Kong, W. T., Piot, C., Halitzki, E., Dunsmore, G., Khalilnezhad, S. et al., Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity. 2021. 54: 1883-1900. e5.
Brown, C. C., Gudjonson, H., Pritykin, Y., Deep, D., Lavallée, V. P., Mendoza, A., Fromme, R. et al., Transcriptional Basis of Mouse and Human Dendritic Cell Heterogeneity. Cell 2019. 179: 846-863. e24.
Satpathy, A. T., Briseño, C. G., Lee, J. S., Ng, D., Manieri, N. A., Kc, W., Wu, X. et al., Notch2-Dependent Classical Dendritic Cells Orchestrate Intestinal Immunity to Attaching-and-Effacing Bacterial Pathogens. Nat. Immunol. 2013. 14: 937-948.
Lewis, K. L., Caton, M. L., Bogunovic, M., Greter, M., Grajkowska, L. T., Ng, D., Klinakis, A. et al., Notch2 Receptor Signaling Controls Functional Differentiation of Dendritic Cells in the Spleen and Intestine. Immunity 2011. 35: 780-791.
Gao, Y., Nish, S. A., Jiang, R., Hou, L., Licona-Limón, P., Weinstein, J. S., Zhao, H. et al., Control of T Helper 2 Responses by Transcription Factor IRF4-Dependent Dendritic Cells. Immunity 2013. 39: 722-732.
Drescher, H., Weiskirchen, S. and Weiskirchen, R., Flow Cytometry: A Blessing and a Curse. Biomedicines 2021. 9: 1613.
Jaye, D. L., Bray, R. A., Gebel, H. M., Harris, W. A. C. and Waller, E. K., Translational Applications of Flow Cytometry in Clinical Practice. J. Immunol. 2012. 188: 4715-4719.
Bludau, I. and Aebersold, R., Proteomic and Interactomic Insights into the Molecular Basis of Cell Functional Diversity. Nat. Rev. Mol. Cell Biol. 2020. 21: 327-340.
Aebersold, R. and Mann, M., Mass-Spectrometric Exploration of Proteome Structure and Function. Nature 2016. 537: 347-355.
Myers, S. A., Rhoads, A., Cocco, A. R., Peckner, R., Haber, A. L., Schweitzer, L. D., Krug, K. et al., Streamlined Protocol for Deep Proteomic Profiling of FAC-Sorted Cells and Its Application to Freshly Isolated Murine Immune Cells. Mol. Cell. Proteomics 2019. 18: 995-1009.
Maes, E., Cools, N., Willems, H. and Baggerman, G., FACS-Based Proteomics Enables Profiling of Proteins in Rare Cell Populations. Int. J. Mol. Sci. 2020. 21: 1-12.
Sielaff, M., Kuharev, J., Bohn, T., Hahlbrock, J., Bopp, T., Tenzer, S. and Distler, U., Evaluation of FASP, SP3, and IST Protocols for Proteomic Sample Preparation in the Low Microgram Range. J. Proteome Res. 2017. 16: 4060-4072.
Hughes, C. S., Moggridge, S., Müller, T., Sorensen, P. H., Morin, G. B. and Krijgsveld, J., Single-Pot, Solid-Phase-Enhanced Sample Preparation for Proteomics Experiments. Nat. Protoc. 2019. 14: 68-85.
Hughes, C. S., Foehr, S., Garfield, D. A., Furlong, E. E., Steinmetz, L. M. and Krijgsveld, J., Ultrasensitive Proteome Analysis Using Paramagnetic Bead Technology. Mol. Syst. Biol. 2014. 10: 757.
Meier, F., Brunner, A. D., Frank, M., Ha, A., Bludau, I., Voytik, E., Kaspar-Schoenefeld, S. et al., DiaPASEF: Parallel Accumulation-Serial Fragmentation Combined with Data-Independent Acquisition. Nat. Methods 2020. 17: 1229-1236.
Diener, N., Fontaine, J. F., Klein, M., Hieronymus, T., Wanke, F., Kurschus, F. C., Ludwig, A. et al., Posttranslational Modifications by ADAM10 Shape Myeloid Antigen-Presenting Cell Homeostasis in the Splenic Marginal Zone. Proc. Natl. Acad. Sci. U. S. A. 2021. 118: e2111234118.
Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. and Ralser, M., DIA-NN: Neural Networks and Interference Correction Enable Deep Proteome Coverage in High Throughput. Nat. Methods 2020. 17: 41-44.
Kolde, R. Pheatmap: Pretty Heatmaps. 2019.
Lazar, C. ImputeLCMD: A Collection of Methods for Left-Censored Missing Data Imputation. 2015.
Stacklies, W., Redestig, H., Scholz, M., Walther, D. and Selbig, J., PcaMethods-a Bioconductor Package Providing PCA Methods for Incomplete Data. Bioinformatics 2007. 23: 1164-1167.
Huang, D. W., Sherman, B. T. and Lempicki, R. A., Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources. Nat. Protoc. 2009. 4: 44-57.
Moggridge, S., Sorensen, P. H., Morin, G. B. and Hughes, C. S., Extending the Compatibility of the SP3 Paramagnetic Bead Processing Approach for Proteomics. J. Proteome Res. 2018. 17: 1730-1740.
Sinitcyn, P., Hamzeiy, H., Salinas Soto, F., Itzhak, D., McCarthy, F., Wichmann, C., Steger, M. et al., MaxDIA Enables Library-Based and Library-Free Data-Independent Acquisition Proteomics. Nat. Biotechnol. 2021. 39: 1563-1573.
Navarro, P., Kuharev, J., Gillet, L. C., Bernhardt, O. M., MacLean, B., Röst, H. L., Tate, S. A. et al., A Multicenter Study Benchmarks Software Tools for Label-Free Proteome Quantification. Nat. Biotechnol. 2016. 34: 1130-1136.
Distler, U., Kuharev, J., Navarro, P., Levin, Y., Schild, H. and Tenzer, S., Drift Time-Specific Collision Energies Enable Deep-Coverage Data-Independent Acquisition Proteomics. Nat. Methods 2014. 11: 167-170.
Okuda, S., Watanabe, Y., Moriya, Y., Kawano, S., Yamamoto, T., Matsumoto, M., Takami, T. et al., JPOSTrepo: An International Standard Data Repository for Proteomes. Nucleic. Acids. Res. 2017. 45: D1107-D1111.
Murphy, D. A. and Courtneidge, S. A., The ‘ins’ and ‘outs’ of podosomes and invadopodia: characteristics, formation and function. Nat. Rev. Mol. Cell Biol. 2011. 12: 413-426.
David-Pfeuty, T. and Singer, S. J., Altered distributions of the cytoskeletal proteins vinculin and alpha-actinin in cultured fibroblasts transformed by Rous sarcoma virus. Proc. Natl. Acad. Sci. USA 1980. 77: 6687-6691.
Tarone, G., Cirillo, D., Giancotti, F. G., Comoglio, P. M. and Marchisio, P. C., Rous sarcoma virus-transformed fibroblasts adhere primarily at discrete protrusions of the ventral membrane called podosomes. Exp. Cell. Res. 1985. 159: 141-157.
Chen, W. T., Chen, J. M., Parsons, S. J. and Parsons, J. T., Local degradation of fibronectin at sites of expression of the transforming gene product pp60src. Nature 1985. 316: 156-158.
Linder, S. and Wiesner, C., Tools of the trade: podosomes as multipurpose organelles of monocytic cells. Cell Mo.l Life Sci. 2015. 72: 121-135.
van den Dries, K., Linder, S., Maridonneau-Parini, I. and Poincloux, R., Probing the mechanical landscape - new insights into podosome architecture and mechanics. J. Cell Sci. 2019. 132: jcs236828.
Diaz, B., Invadopodia Detection and Gelatin Degradation Assay. Bio Protoc. 2013. 3: e997.
West, M. A., Wallin, R. P., Matthews, S. P., Svensson, H. G., Zaru, R., Ljunggren, H. G., Prescott, A. R. et al., Enhanced dendritic cell antigen capture via toll-like receptor-induced actin remodeling. Science 2004. 305: 1153-1157.
Burns, S., Hardy, S. J., Buddle, J., Yong, K. L., Jones, G. E. and Thrasher, A. J., Maturation of DC is associated with changes in motile characteristics and adherence. Cell Motil. Cytoskeleton 2004. 57: 118-132.
Worbs, T., Hammerschmidt, S. I. and Förster, R., Dendritic cell migration in health and disease. Nat. Rev. Immunol. 2017. 17: 30-48.
Moreau, H. D., Piel, M., Voituriez, R. and Lennon-Duménil, A. M., Integrating Physical and Molecular Insights on Immune Cell Migration. Trends Immunol. 2018. 39: 632-643.
Nourshargh, S., Hordijk, P. L. and Sixt, M., Breaching multiple barriers: leukocyte motility through venular walls and the interstitium. Nat. Rev. Mol. Cell Biol. 2010. 11: 366-378.
Kameritsch, P. and Renkawitz, J., Principles of Leukocyte Migration Strategies. Trends Cell Biol. 2020. 30: 818-832.
Sixt, M. and Lämmermann, T., In vitro analysis of chemotactic leukocyte migration in 3D environments. Methods in molecular biology (Clifton, N.J.). 2011. 769: 149-165.
Vargas, P., Chabaud, M., Thiam, H. R., Lankar, D., Piel, M. and Lennon-Duménil, A. M., Study of dendritic cell migration using micro-fabrication. J. Immunol. Methods. 2016. 432: 30-34.
Kroll, J., Ruiz-Fernandez, M. J. A., Braun, M. B., Merrin, J. and Renkawitz, J., Quantifying the Probing and Selection of Microenvironmental Pores by Motile Immune Cells. Curr Protoc 2022. 2: e407.
Renkawitz, J., Reversat, A., Leithner, A., Merrin, J. and Sixt, M., Micro-engineered “pillar forests” to study cell migration in complex but controlled 3D environments. Methods Cell Biol. 2018. 147: 79-91.
Nelson, R. D., Quie, P. G. and Simmons, R L., Chemotaxis under agarose: A new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes. J. Immunol. 1975. 115: 1650-1656.
Heit, B., and Kubes, P., Measuring Chemotaxis and Chemokinesis: The Under-Agarose Cell Migration Assay. Sci. STKE. 2003. 2003: pl5-pl5.
Renkawitz, J. and Sixt, M., Mechanisms of force generation and force transmission during interstitial leukocyte migration. EMBO Rep. 2010. 11: 744-750.
Lämmermann, T., Bader, B. L., Monkley, S. J., Worbs, T., Wedlich-Söldner, R., Hirsch, K., Keller, M. et al., Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature. 2008. 453: 51-55.
Renkawitz, J., Schumann, K., Weber, M., Lämmermann, T., Pflicke, H., Piel, M., Polleux, J. et al., Adaptive force transmission in amoeboid cell migration. Nat. Cell Biol. 2009. 11: 1438-1443.
Maiuri, P., Rupprecht, J. F., Wieser, S., Ruprecht, V., Bénichou, O., Carpi, N., Coppey, M. et al., Actin flows mediate a universal coupling between cell speed and cell persistence. Cell. 2015. 161: 374-386.
Malawista, S. E. and Chevance, A D B., Random locomotion and chemotaxis of human blood polymorphonuclear leukocytes (PMN) in the presence of EDTA: PMN in close quarters require neither leukocyte integrins nor external divalent cations. Proc. Nat. Acad. Sci. U.S.A. 1997. 94: 11577-11582.
Liu, Y. J., Le Berre, M., Lautenschlaeger, F., Maiuri, P., Callan-Jones, A., Heuzé, M., Takaki, T. et al., Confinement and Low Adhesion Induce Fast Amoeboid Migration of Slow Mesenchymal Cells. Cell. 2015. 160: 659-672.
Lämmermann, T., Renkawitz, J., Wu, X., Hirsch, K., Brakebusch, C. and Sixt, M., Cdc42-dependent leading edge coordination is essential for interstitial dendritic cell migration. Am. J. Blood Res. 2009. 113: 5703-5710.
Weier, A. K., Homrich, M., Ebbinghaus, S., Juda, P., Miková, E., Hauschild, R., Zhang, L. et al., Multiple centrosomes enhance migration and immune cell effector functions of mature dendritic cells. J. Cell Biol., 2022. 221: e202107134.
Bell, G. R. R., Natwick, D. E. and Collins, S R., Rho GTPases, Methods and Protocols. Methods Mol Biology. 2018. 1821: 71-85.
Kopf, A., Renkawitz, J., Hauschild, R., Girkontaite, I., Tedford, K., Merrin, J., Thorn-Seshold, O. et al., Microtubules control cellular shape and coherence in amoeboid migrating cells. J. Cell Biol. 2020. 219: e201907154.
Gaertner, F., Reis-Rodrigues, P., de Vries, I., Hons, M., Aguilera, J., Riedl, M., Leithner, A. et al., WASp triggers mechanosensitive actin patches to facilitate immune cell migration in dense tissues. Dev. Cell. 2021. 57: 47-62.
Collins, S. R., Yang, H. W., Bonger, K. M., Guignet, E. G., Wandless, T. J. and Meyer, T., Using light to shape chemical gradients for parallel and automated analysis of chemotaxis. Mol. Syst. Biol. 2015. 11: 804-804.
Vargas, P., Maiuri, P., Bretou, M., Sáez, P. J., Pierobon, P., Maurin, M., Chabaud, M. et al., Innate control of actin nucleation determines two distinct migration behaviours in dendritic cells. Nat. Cell Biol. 2016. 18: 43-53.
Schumann, K., Lammermann, T., Bruckner, M., Legler, D. F., Polleux, J., Spatz, J. P., Schuler, G. et al., Immobilized chemokine fields and soluble chemokine gradients cooperatively shape migration patterns of dendritic cells. Immunity 2010. 32: 703-713.
Schwarz, J., Bierbaum, V., Vaahtomeri, K., Hauschild, R., Brown, M., de Vries, I., Leithner, A. et al., Dendritic Cells Interpret Haptotactic Chemokine Gradients in a Manner Governed by Signal-to-Noise Ratio and Dependent on GRK6. Curr. Biol. 2017. 27: 1314-1325.
Reversat, A., Gaertner, F., Merrin, J., Stopp, J., Tasciyan, S., Aguilera, J., de Vries, I. et al., Cellular locomotion using environmental topography. Nature. 2020. 582: 582-585.
Kwon, K. W., Park, H., Song, K. H., Choi, J. C., Ahn, H., Park, M. J., Suh, K. Y. et al., Nanotopography-Guided Migration of T Cells. J. Immunol. 2012. 189: 2266-2273.
Kienle, K., Glaser, K. M., Eickhoff, S., Mihlan, M., Knöpper, K., Reátegui, E., Epple, M. W. et al., Neutrophils self-limit swarming to contain bacterial growth in vivo. Science. 2021. 372: eabe7729.
Tsai, T. Y. C., Collins, S. R., Chan, C. K., Hadjitheodorou, A., Lam, P. Y., Lou, S. S., Yang, H. W. et al., Efficient Front-Rear Coupling in Neutrophil Chemotaxis by Dynamic Myosin II Localization. Dev. Cell 2019. 49: 189-205. e6.
Yang, H. W., Collins, S. R. and Meyer, T., Locally excitable Cdc42 signals steer cells during chemotaxis. Nat. Cell Biol. 2016. 18: 191-201.
Hons, M., Kopf, A., Hauschild, R., Leithner, A., Gaertner, F., Abe, J., Renkawitz, J. et al., Chemokines and integrins independently tune actin flow and substrate friction during intranodal migration of T cells. Nat. Immunol. 2018. 19: 606-616.
Moalli, F., Ficht, X., Germann, P., Vladymyrov, M., Stolp, B., de, V. I., Lyck, R. et al., The Rho regulator Myosin IXb enables nonlymphoid tissue seeding of protective CD8+ T cells. J. Exp. Med. 2018. 215: 1869-1890.
Rupnick, M. A., Stokes, C. L., Williams, S. K. and Lauffenburger, D. A., Quantitative analysis of random motility of human microvessel endothelial cells using a linear under-agarose assay. Laboratory Investigation J Technical Methods Pathology. 1988. 59: 363-372.
Bergert, M., Erzberger, A., Desai, R. A., Aspalter, I. M., Oates, A. C., Charras, G., Salbreux, G. et al., Force transmission during adhesion-independent migration. Nat. Cell Biol. 2015. 17: 524-529.
Logue, J. S., Cartagena-Rivera, A. X., Baird, M. A., Davidson, M. W., Chadwick, R. S. and Waterman, C M., Erk regulation of actin capping and bundling by Eps8 promotes cortex tension and leader bleb-based migration. Elife 2015. 4: e08314.
Ruprecht, V., Wieser, S., Callan-Jones, A., Smutny, M., Morita, H., Sako, K., Barone, V. et al., Cortical Contractility Triggers a Stochastic Switch to Fast Amoeboid Cell Motility. Cell. 2015. 160: 673-685.
Singh, S. P., Thomason, P. A., Lilla, S., Schaks, M., Tang, Q., Goode, B. L., Machesky, L. M. et al., Cell-substrate adhesion drives Scar/WAVE activation and phosphorylation by a Ste20-family kinase, which controls pseudopod lifetime. PLoS Biol. 2020. 18: e3000774.
Busch, B., Weimer, R., Woischke, C., Fischer, W. and Haas, R. Helicobacter pylori interferes with leukocyte migration via the outer membrane protein HopQ and via CagA translocation. Int. J. Med. Microbiol. 2015. 305: 355-364.
Salzer, E., Cagdas, D., Hons, M., Mace, E. M., Garncarz, W., Petronczki, Ö. Y., Platzer, R. et al., RASGRP1 deficiency causes immunodeficiency with impaired cytoskeletal dynamics. Nat. Immunol. 2016. 17: 1352-1360.
Schneider, C. A., Rasband, W. S. and Eliceiri, K W., NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012. 9: 671-675.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S. et al., Fiji: an open-source platform for biological-image analysis. Nat. Methods 2012. 9: 676-682.
Zantl, R. and Horn, E., Cell Migration, Developmental Methods and Protocols. Methods Mol Biology. 2011. 769: 191-203.
Tinevez, J. Y., Perry, N., Schindelin, J., Hoopes, G. M., Reynolds, G. D., Laplantine, E., Bednarek, S. Y. et al., TrackMate: An open and extensible platform for single-particle tracking. Methods. 2017. 115: 80-90.
Berg, S., Kutra, D., Kroeger, T., Straehle, C. N., Kausler, B. X., Haubold, C., Schiegg, M. et al., ilastik: interactive machine learning for (bio)image analysis. Nature methods. 2019. 16: 1226-1232.
Feng, M., Zhou, S., Yu, Y., Su, Q., Li, X. and Lin, W., Regulation of the Migration of Distinct Dendritic Cell Subsets. Front. Cell Dev. Biol. 2021. 9: 635221.
Sáez, P. J., Sáez, J. C., Lennon-Duménil, A. M. and Vargas, P., Role of calcium permeable channels in dendritic cell migration. Curr. Opin. Immunol. 2018. 52: 74-80.
Sáez, P. J., Vargas, P., Shoji, K. F., Harcha, P. A., Lennon-Duménil, A. M. and Sáez, J. C., ATP promotes the fast migration of dendritic cells through the activity of pannexin 1 channels and P2×7 receptors. Sci. Signal 2017. 10: eaah7107.
Barbier, L., Sáez, P. J., Attia, R., Lennon-Dumenil, A. M., Lavi, I., Piel, M. and Vargas, P., Myosin II Activity Is Selectively Needed for Migration in Highly Confined Microenvironments in Mature Dendritic Cells. Front. Immunol. 2019. 10: 747.
Bretou, M., Sáez, P. J., Sanseau, D., Maurin, M., Lankar, D., Chabaud, M., Spampanato, C. et al., Lysosome signaling controls the migration of dendritic cells. Sci Immunol 2017. 2: eaak9573.
Vargas, P., Barbier, L., Sáez, P. J. and Piel, M., Mechanisms for fast cell migration in complex environments. Curr. Opin. Cell Biol. 2017. 48: 72-78.
Harcha, P. A., Lopez-Lopez, T., Palacios, A. G. and Sáez, P. J., Pannexin Channel Regulation of Cell Migration: Focus on Immune Cells. Front. Immunol. 2021. 12: 750480.
Hong, W., Yang, B., He, Q., Wang, J. and Weng, Q., New Insights of CCR7 Signaling in Dendritic Cell Migration and Inflammatory Diseases. Front. Pharmacol. 2022. 13: 841687.
de Winde, C. M., Munday, C. and Acton, S. E., Molecular mechanisms of dendritic cell migration in immunity and cancer. Med Microbiol Immunol 2020. 209: 515-529.
Weber, M., Hauschild, R., Schwarz, J., Moussion, C., de Vries, I., Legler, D. F., Luther, S. A. et al., Interstitial dendritic cell guidance by haptotactic chemokine gradients. Science 2013. 339: 328-332.
Bosnjak, B., Do, K. T. H., Forster, R. and Hammerschmidt, S. I., Imaging dendritic cell functions. Immunol. Rev. 2022. 306: 137-163.
Faure-Andre, G., Vargas, P., Yuseff, M. I., Heuze, M., Diaz, J., Lankar, D., Steri, V. et al., Regulation of dendritic cell migration by CD74, the MHC class II-associated invariant chain. Science 2008. 322: 1705-1710.
Sáez, P. J., Barbier, L., Attia, R., Thiam, H. R., Piel, M. and Vargas, P., Leukocyte Migration and Deformation in Collagen Gels and Microfabricated Constrictions. Methods Mol. Biol. 2018. 1749: 361-373.
Ershov, D., Phan, M. S., Pylvanainen, J. W., Rigaud, S. U., Le Blanc, L., Charles-Orszag, A., Conway, J. R. W. et al., TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking pipelines. Nat. Methods 2022. 19: 829-883.
Romani, N., Clausen, B. E. and Stoitzner, P., Langerhans cells and more: langerin-expressing dendritic cell subsets in the skin. Immunol. Rev. 2010. 234: 120-141.
Clausen, B. E. and Stoitzner, P., Functional specialization of skin dendritic cell subsets in regulating T cell responses. Front. Immunol. 2015. 6: 534.
Bancherau, J. and Steinmann, R. M., Dendritic cells and the control of immunity. Nature. 1998. 392: 245-252.
Kaplan, D. H., Ontogeny and function of murine epidermal Langerhans cells. Nat. Immunol. 2017. 18: 1068-1075.
Brand, A., Diener, N., Zahner, S. P., Tripp, C., Backer, R. A., Karram, K., Jiang, A. et al., E-cadherin is Dispensable to Maintain Langerhans Cells in the Epidermis. J. Invest. Dermatol. 2020. 140: 132-142.
Kashem, S. W., Igyarto, B. Z., Gerami-Nejad, M., Kumamoto, Y., Mohammed, J. A., Jarrett, E., Drummond, R. A. et al., Cadidia albicans morphology and dendritic cell subsets determine T helper cell differentiation. Immunity. 2015. 42: 356-366.
Kautz-Neu, K., Noordegraaf, M., Dinges, S., Bennett, C. L., John, D., Clausen, B. E. and von Stebut, E., Langerhans Cells are negative regulators of the anti-Leishmania response. J. Exp. Med. 2011. 208:885-891.
Henri, S., Poulin, L. F., Tamoutounour, S., Ardouin, L., Guilliams, M., de Bovis, B., Devilard, E. et al., CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells. J. Exp. Med. 2010. 207: 189-206.
Guilliams, M., Dutertre, C. A., Scott, C. L., Mc Govern, N., Sichien, D., Charakarov, S., Van Gassen, S. et al., Unsupervised High-Dimensional Analysis Aligns Dendritic Cells across Tissues and Species. Immunity. 2016. 45: 669-684.
Seneschal, J., Jiang, X. and Kupper, T. S., Langerin+ Dermal DC, but not Langerhans cells, are required for effective CD8 mediated immune responses after skin scarification with Vaccina Virus (VACV). J. Invest. Dermatol. 2014. 134: 686-694.
Mollah, S. A., Dobrin, J. S., Feder, R. E., Tse, S. W., Matos, I. G., Cheong, C., Steinman, R. M. et al., Flt3L dependence helps define an uncharacterized subset of murine cutaneous dendritic cells. J. Invest. Dermatol. 2014. 134: 1265-1275.
Stoitzner, P., Tripp, C. H., Eberhart, A., Price, K. M., Jung, J. Y., Bursch, L., Ronchese, F. et al., Langerhans cells cross-present antigen derived from skin. Proc. Natl Acad. Sci. 2006. 103: 7783-7788.
Hain, T., Melchior, F., Kamenjarin, N., Muth, S., Weslati, H., Clausen, B. E., Mahnke, K. et al., Dermal CD207-Negative Migratory Dendritic Cells Are Fully Competent to Prime Protective, Skin Homing Cytotoxic T-Lymphcyte Responses. J. Invest. Dermatol. 2019. 139: 422-429.
Miller, H. L., Andhey, P. S., Swiecki, M. K., Rosa, B. A., Zaitsev, K., Villani, A. C., Mitreva, M. et al., Altered ratio of dendritic cell subsets in skin-draining lymph nodes promotes Th2-driven contact hypersensitivity. Proc. Natl Acad. Sci. 2021. 118: e2032364118.
Probst, H. C., Stoitzner, P., Amon, L., Backer, R. A., Brand, A., Chen, J., Clausen, B. E. et al., Guidelines for DC preparation and flow cytometry analysis of mouse non-lymphoid tissues. Eur. J. Immunol. 2023. 53: 2249819.
Bell, D. B., Kitajima, M. K., Larson, R. P., Stoklasek, T. A., Dang, K., Sakamoto, K., Wagner, K. U. et al., The transcription factor STAT5 is critical in dendritic cells for the development of TH2 but not TH1 responses. Nat. Immunol. 2013. 14: 364-371.
Kissenpfennig, A., Henri, S., Dubois, B., Laplace-Builhé, C., Perrin, P., Romani, N., Tripp, C. H. et al., Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity. 2005. 22: 643-654.
Ouchi, T., Nakato, G. and Udey, M. C., EpCAM Expressed by Murine Epidermal Langerhans Cells Modulates Immunization to an Epicutaneously-applied Protein Antigen. J. Invest. Dermatol. 2016. 136: 1627-1635.
Stoitzner, P., Pfaller, K., Stössel, H. and Romani, N., A close-up view of migrating Langerhans cells in the skin. J. Invest. Dermatol. 2002. 118: 117-125.
Hatscher, L., Amon, L., Heger, L. and Dudziak, D., Inflammasomes in Dendritic Cells: Friend or Foe? Immunol. Lett. 2021. 234: 16-32.
Broz, P. and Dixit, V. M., Inflammasomes: Mechanism of assembly, regulation and signalling, Nat. Rev. Immunol. 2016. 16: 407-420.
Broz, P., Pelegrín, P. and Shao, F., The gasdermins, a protein family executing cell death and inflammation, Nat. Rev. Immunol. 2020. 20: 143-157.
Shi, J., Zhao, Y., Wang, K., Shi, X., Wang, Y., Huang, H., Zhuang, Y. et al., Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death, Nature. 2015. 526: 660-665.
Liu, X., Zhang, Z., Ruan, J., Pan, Y., Magupalli, V. G., Wu, H. and Lieberman, J., Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores, Nature. 2016. 535: 153-158.
Swanson, K. V., Deng, M. and Ting, J. P. Y., The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 2019. 19: 477-489.
Chung, Y., Chang, S. H., Martinez, G. J., Yang, X. O., Nurieva, R., Kang, H. S., Ma, L. et al., Critical Regulation of Early Th17 Cell Differentiation by Interleukin-1 Signaling. Immunity. 2009. 30: 576-587.
Dinarello, C. A., IL-18: A TH1 -inducing, proinflammatory cytokine and new member of the IL-1 family, J. Allergy Clin. Immunol. 1999. 103: 11-24.
Okamura, H., Tsutsi, H., Komatsu, T., Yutsudo, M., Hakura, A., Tanimoto, T., Torigoe, K. et al., Cloning of a new cytokine that induces, Nature. 1995. 378: 88-91.
Latz, E., Xiao, T. S. and Stutz, A., Activation and regulation of the inflammasomes., Nat. Rev. Immunol. 2013. 13: 397-411.
Mangan, M. S. J., Olhava, E. J., Roush, W. R., Seidel, H. M., Glick, G. D. and Latz, E., Targeting the NLRP3 inflammasome in inflammatory diseases, Nat Rev Drug Discov 2018. 17: 588-606.
Hatscher, L., Lehmann, C. H. K., Purbojo, A., Onderka, C., Liang, C., Hartmann, A., Cesnjevar, R. et al., Select hyperactivating NLRP3 ligands enhance the T H 1- and T H 17-inducing potential of human type 2 conventional dendritic cells, Sci. Signal 2021. 14: eabe1757.
McDaniel, M. M., Kottyan, L. C., Singh, H. and Pasare, C., Suppression of Inflammasome Activation by IRF8 and IRF4 in cDCs Is Critical for T Cell Priming, Cell Rep. 2020. 31: 107604.
Zhivaki, D., Borriello, F., Chow, O. A., Sokol, C. L., Zanoni, I., Kagan Correspondence, J. C., Doran, B. et al., Inflammasomes within Hyperactive Murine Dendritic Cells Stimulate Long-Lived T Cell-Mediated Anti-tumor Immunity. Cell Rep. 2020. 33: 108381.
Heger, L., Dudziak, D., Amon, L., Hatscher, L., Kaszubowski, T. and Lehmann, C. H. K., Guidelines for DC preparation and flow cytometric analysis of human lymphohematopoietic tissues. Eur. J. Immunol. 2023. 53: 2249917.
Rodrigues, T. S., de Sá, K. S. G., Ishimoto, A. Y., Becerra, A., Oliveira, S., Almeida, L., Gonçalves, A. V. et al., Inflammasomes are activated in response to SARS-cov-2 infection and are associated with COVID-19 severity in patients. J. Exp. Med. 2020. 218: e20201707.
Storek, K. M. and Monack, D. M., Bacterial recognition pathways that lead to inflammasome activation, Immunol. Rev. 2015. 265: 112-129.
Chakrabarti, A., Banerjee, S., Franchi, L., Loo, Y. M., Gale, M., Núñez, G. and Silverman, R. H., RNase L activates the NLRP3 inflammasome during viral infections, Cell Host Microbe. 2015. 17: 466-477.
Wang, X., Jiang, W., Yan, Y., Gong, T., Han, J., Tian, Z. and Zhou, R., RNA viruses promote activation of the NLRP3 inflammasome through a RIP1-RIP3-DRP1 signaling pathway, Nat. Immunol. 2014. 15: 1126-1133.
Maelfait, J., Vercammen, E., Janssens, S., Schotte, P., Haegman, M., Magez, S. and Beyaert, R., Stimulation of Toll-like receptor 3 and 4 induces interleukin-1β maturation by caspase-8, J. Exp. Med. 2008. 205: 1967-1973.
Gaidt, M. M., Ebert, T. S., Chauhan, D., Schmidt, T., Schmid-Burgk, J. L., Rapino, F., Robertson, A. A. B. et al., Human Monocytes Engage an Alternative Inflammasome Pathway, Immunity. 2016. 44: 833-846.
Shi, J., Zhao, Y., Wang, Y., Gao, W., Ding, J., Li, P., Hu, L. et al., Inflammatory caspases are innate immune receptors for intracellular LPS, Nature. 2014. 514: 187-192.
Zanoni, I., Tan, Y., Di Gioia, M., Broggi, A., Ruan, J., Shi, J., Donado, C. A. et al., An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science (80-.). 2016. 352: 1232-1236.
Heger, L., Amon, L., Lehmann, C. H. K. and Dudziak, D., Systems Immunology Approaches for Understanding of Primary Dendritic Cell Subpopulations in the Past, Present and Future. in: Syst. Med., Elsevier, 2021: 501-510.
Baker, P. J., Boucher, D., Bierschenk, D., Tebartz, C., Whitney, P. G., D'Silva, D. B., Tanzer, M. C. et al., NLRP3 inflammasome activation downstream of cytoplasmic LPS recognition by both caspase-4 and caspase-5, Eur. J. Immunol. 2015. 45: 2918-2926.
Schmid-Burgk, J. L., Gaidt, M. M., Schmidt, T., Ebert, T. S., Bartok, E. and Hornung, V., Caspase-4 mediates non-canonical activation of the NLRP3 inflammasome in human myeloid cells, Eur. J. Immunol. 2015. 45: 2911-2917.
Mahnke, K., Guo, M., Lee, S., Sepulveda, H., Swain, S. L., Nussenzweig, M. and Steinman, R. M., The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments. J. Cell Biol. 2000. 151: 673-684.
Inaba, K., Turley, S., Yamaide, F., Iyoda, T., Mahnke, K., Inaba, M., Pack, M. et al., Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells. J. Exp. Med. 1998. 188: 2163-2173.
Mellman, I., Antigen processing and presentation by dendritic cells: cell biological mechanisms. Adv. Exp. Med. Biol. 2005. 560: 63-67.
Turley, S. J., Inaba, K., Garrett, W. S., Ebersold, M., Unternaehrer, J., Steinman, R. M. and Mellman, I., Transport of peptide-MHC class II complexes in developing dendritic cells. Science 2000. 288: 522-527.
Mahnke, K., Qian, Y., Fondel, S., Brueck, J., Becker, C. and Enk, A. H., Targeting of antigens to activated dendritic cells in vivo cures metastatic melanoma in mice. Cancer Res. 2005. 65: 7007-7012.
Berard, M. and Tough, D. F., Qualitative differences between naïve and memory T cells. Immunology 2002. 106: 127-138.
Spörri, R. and Reis e Sousa, C., Newly activated T cells promote maturation of bystander dendritic cells but not IL-12 production. J. Immunol. 2003. 171: 6406-6413.
Szajnik, M., Szczepanski, M. J., Czystowska, M., Elishaev, E., Mandapathil, M., Nowak-Markwitz, E., Spaczynski, M. et al., TLR4 signaling induced by lipopolysaccharide or paclitaxel regulates tumor survival and chemoresistance in ovarian cancer. Oncogene 2009. 28: 4353-4363.
McCall, J. L., Varney, M. E., Rice, E., Dziadowicz, S. A., Hall, C., Blethen, K. E., Hu, G. et al., Prenatal cadmium exposure alters proliferation in mouse CD4+ T cells via LncRNA Snhg7. Front. Immunol. 2021. 12: 720635.
Denham, E. M., Barton, M. I., Black, S. M., Bridge, M. J., de Wet, B., Paterson, R. L., van der Merwe, P. A. et al., A generic cell surface ligand system for studying cell-cell recognition. PLoS Biol. 2019. 17: e3000549.
Day, C. L., Abrahams, D. A., Lerumo, L., van Rensburg, E. J., Stone, L., O'rie, T., Pienaar, B. et al., Functional capacity of Mycobacterium tuberculosis-specific T cell responses in humans is associated with mycobacterial load. J. Immunol. 2011. 187: 2222-2232.
Flannagan, R. S. and Heinrichs, D. E., A fluorescence based-proliferation assay for the identification of replicating bacteria within host cells. Front Microbiol 2018. 9: 3084.
Colbert, J. D., Cruz, F. M. and Rock, K. L., Cross-presentation of exogenous antigens on MHC I molecules. Curr. Opin. Immunol. 2020. 64: 1-8.
Childs, E., Henry, C. M., Canton, J. and Reis e Sousa, C., Maintenance and loss of endocytic organelle integrity: mechanisms and implications for antigen cross-presentation. Open Biol. 2021. 11: 210194.
Embgenbroich, M. and Burgdorf, S., Current Concepts of Antigen Cross-Presentation. Front. Immunol. 2018. 9: 1643.
Porgador, A., Yewdell, J. W., Deng, Y., Bennink, J. R. and Germain, R. N., Localization, quantitation, and in situ detection of specific peptide-MHC class I complexes using a monoclonal antibody. Immunity. 1997. 6: 715-726.
Hermans, I. F., Silk, J. D., Yang, J., Palmowski, M. J., Gileadi, U., McCarthy, C., Salio, N. et al., The VITAL assay: a versatile fluorometric technique for assessing CTL- and NKT-mediated cytotoxicity against multiple targets in vitro and in vivo. J. Immunol. Methods. 2004. 285: 25-40.
Quah, B. J., Wijesundara, D. K., Ranasinghe, C. and Parish, C R., Fluorescent target array killing assay: a multiplex cytotoxic T-cell assay to measure detailed T-cell antigen specificity and avidity in vivo. Cytometry A. 2012. 81: 679-690.
Oehen, S. and Brduscha-Riem, K. Differentiation of naive CTL to effector and memory CTL: correlation of effector function with phenotype and cell division. J. Immunol. 1998. 161: 5338-5346.
Lehmann, C. H., Heger, L., Heidkamp, G. F., Baranska, A., Luhr, J. J., Hoffmann, A. and Dudziak, D., Direct Delivery of Antigens to Dendritic Cells via Antibodies Specific for Endocytic Receptors as a Promising Strategy for Future Therapies. Vaccines (Basel). 2016. 4: 8.
Amon, L., Hatscher, L., Heger, L., Dudziak, D. and Lehmann, C. H. K., Harnessing the complete repertoire of conventional dendritic cell functions for cancer immunotherapy, Pharmaceutics. 2020. 12: 1-83.
Amon, L., Lehmann, C. H. K., Heger, L., Heidkamp, G. F. and Dudziak, D., The ontogenetic path of human dendritic cells, Mol. Immunol. 2020. 120: 122-129.
Soares, H., Waechter, H., Glaichenhaus, N., Mougneau, E., Yagita, H., Mizenina, O., Dudziak, D. et al., A subset of dendritic cells induces CD4+ T cells to produce IFN-γ by an IL-12-independent but CD70-dependent mechanism in vivo, J. Exp. Med. 2007. 204: 1095-1106.
den Haan, J. M. M., Lehar, S. M. and Bevan, M. J., Cd8+ but Not Cd8− Dendritic Cells Cross-Prime Cytotoxic T Cells in Vivo, J. Exp. Med. 2000. 192: 1685-1696.
Schlitzer, A., McGovern, N., Teo, P., Zelante, T., Atarashi, K., Low, D., Ho, A. W. S. et al., IRF4 Transcription Factor-Dependent CD11b+ Dendritic Cells in Human and Mouse Control Mucosal IL-17 Cytokine Responses, Immunity. 2013. 38: 970-983.
Tussiwand, R., Everts, B., Grajales-Reyes, G. E., Kretzer, N. M., Iwata, A., Bagaitkar, J., Wu, X. et al., Klf4 Expression in Conventional Dendritic Cells Is Required for T Helper 2 Cell Responses. Immunity. 2015. 42: 916-928.
Segura, E., Durand, M., Amigorena, S., Similar antigen cross-presentation capacity and phagocytic functions in all freshly isolated human lymphoid organ-resident dendritic cells, J. Exp. Med. 2013. 210: 1035-1047.
Cohn, L., Chatterjee, B., Esselborn, F., Smed-Sörensen, A., Nakamura, N., Chalouni, C., Lee, B. C. et al., Antigen delivery to early endosomes eliminates the superiority of human blood BDCA3 + dendritic cells at cross presentation, J. Exp. Med. 2013. 210: 1049-1063.
Yu, C. I., Becker, C., Metang, P., Marches, F., Wang, Y., Toshiyuki, H., Banchereau, J. et al., Human CD141+ dendritic cells induce CD4+ T cells to produce type 2 cytokines., J. Immunol. 2014. 193: 4335-4343.
Jongbloed, S. L., Kassianos, A. J., McDonald, K. J., Clark, G. J., Ju, X., Angel, C. E., Chen, C. J. J. et al., Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens., J. Exp. Med. 2010. 207: 1247-12460.
Tel, J., Schreibelt, G., Sittig, S. P., Mathan, T. S. M., Buschow, S. I., Cruz, L. J., Lambeck, A.J. A. et al., Human plasmacytoid dendritic cells efficiently cross-present exogenous Ags to CD8+ T cells despite lower Ag uptake than myeloid dendritic cell subsets. Am. J. Blood Res. 2013. 121: 459-467.
Nizzoli, G., Krietsch, J., Weick, A., Steinfelder, S., Facciotti, F., Gruarin, P., Bianco, A. et al., Human CD1c+ dendritic cells secrete high levels of IL-12 and potently prime cytotoxic T-cell responses. Am. J. Blood Res. 2013. 122: 932-942.
Belk, J. A., Daniel, B., Satpathy, A. T., Epigenetic regulation of T cell exhaustion, Nat. Immunol. 2022. 848-860.
Piccioli, D., Tavarini, S., Borgogni, E., Steri, V., Nuti, S., Sammicheli, C., Bardelli, M. et al., Functional specialization of human circulating CD16 and CD1c myeloid dendritic-cell subsets. Am. J. Blood Res. 2007. 109: 5371-5379.
فهرسة مساهمة: Keywords: T cell response; dendritic cell; endocytosis; langerhans cell; migration
تواريخ الأحداث: Date Created: 20221223 Date Completed: 20231220 Latest Revision: 20231220
رمز التحديث: 20231220
DOI: 10.1002/eji.202249925
PMID: 36563126
قاعدة البيانات: MEDLINE
الوصف
تدمد:1521-4141
DOI:10.1002/eji.202249925