دورية أكاديمية

Short tRNA anticodon stem and mutant eRF1 allow stop codon reassignment.

التفاصيل البيبلوغرافية
العنوان: Short tRNA anticodon stem and mutant eRF1 allow stop codon reassignment.
المؤلفون: Kachale A; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.; Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic., Pavlíková Z; Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic., Nenarokova A; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.; Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic.; School of Biological Sciences, University of Bristol, Bristol, UK., Roithová A; Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic., Durante IM; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic., Miletínová P; Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic., Záhonová K; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.; Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic.; Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic., Nenarokov S; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.; Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic., Votýpka J; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.; Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic., Horáková E; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.; Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czech Republic., Ross RL; Thermo Fisher Scientific, Franklin, MA, USA., Yurchenko V; Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic., Beznosková P; Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic., Paris Z; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic. parda@paru.cas.cz.; Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic. parda@paru.cas.cz., Valášek LS; Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic. valasekl@biomed.cas.cz., Lukeš J; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic. jula@paru.cas.cz.; Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic. jula@paru.cas.cz.
المصدر: Nature [Nature] 2023 Jan; Vol. 613 (7945), pp. 751-758. Date of Electronic Publication: 2023 Jan 11.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Anticodon*/chemistry , Anticodon*/genetics , Anticodon*/metabolism , Codon, Terminator*/genetics , Genetic Code*/genetics , Mutation* , Peptide Termination Factors*/genetics , Peptide Termination Factors*/metabolism , RNA, Transfer*/genetics , RNA, Transfer*/metabolism , Eukaryotic Cells*, Ciliophora/genetics ; RNA, Transfer, Trp/genetics ; Saccharomyces cerevisiae/genetics ; RNA, Transfer, Glu/genetics ; Trypanosoma brucei brucei/genetics
مستخلص: Cognate tRNAs deliver specific amino acids to translating ribosomes according to the standard genetic code, and three codons with no cognate tRNAs serve as stop codons. Some protists have reassigned all stop codons as sense codons, neglecting this fundamental principle 1-4 . Here we analyse the in-frame stop codons in 7,259 predicted protein-coding genes of a previously undescribed trypanosomatid, Blastocrithidia nonstop. We reveal that in this species in-frame stop codons are underrepresented in genes expressed at high levels and that UAA serves as the only termination codon. Whereas new tRNAs Glu fully cognate to UAG and UAA evolved to reassign these stop codons, the UGA reassignment followed a different path through shortening the anticodon stem of tRNA Trp CCA from five to four base pairs (bp). The canonical 5-bp tRNA Trp recognizes UGG as dictated by the genetic code, whereas its shortened 4-bp variant incorporates tryptophan also into in-frame UGA. Mimicking this evolutionary twist by engineering both variants from B. nonstop, Trypanosoma brucei and Saccharomyces cerevisiae and expressing them in the last two species, we recorded a significantly higher readthrough for all 4-bp variants. Furthermore, a gene encoding B. nonstop release factor 1 acquired a mutation that specifically restricts UGA recognition, robustly potentiating the UGA reassignment. Virtually the same strategy has been adopted by the ciliate Condylostoma magnum. Hence, we describe a previously unknown, universal mechanism that has been exploited in unrelated eukaryotes with reassigned stop codons.
(© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)
التعليقات: Comment in: Nature. 2023 Jan;613(7945):631-632. (PMID: 36631582)
Erratum in: Nature. 2023 Jun;618(7965):E23. (PMID: 37258684)
Erratum in: Nature. 2024 Jan 18;:. (PMID: 38238539)
References: Záhonová, K., Kostygov, A. Y., Ševčíková, T., Yurchenko, V. & Eliáš, M. An unprecedented non-canonical nuclear genetic code with all three termination codons reassigned as sense codons. Curr. Biol. 26, 2364–2369 (2016). (PMID: 2759337810.1016/j.cub.2016.06.064)
Bachvaroff, T. R. A precedented nuclear genetic code with all three termination codons reassigned as sense codons in the syndinean Amoebophrya sp. ex Karlodinium veneficum. PLoS ONE 14, e0212912 (2019). (PMID: 30818350639495910.1371/journal.pone.0212912)
Swart, E. C., Serra, V., Petroni, G. & Nowacki, M. Genetic codes with no dedicated stop codon: context-dependent translation termination. Cell 166, 691–702 (2016). (PMID: 27426948496747910.1016/j.cell.2016.06.020)
Heaphy, S. M., Mariotti, M., Gladyshev, V. N., Atkins, J. F. & Baranov, P. V. Novel ciliate genetic code variants including the reassignment of all three stop codons to sense codons in Condylostoma magnum. Mol. Biol. Evol. 33, 2885–2889 (2016). (PMID: 27501944506232310.1093/molbev/msw166)
Sella, G. & Ardell, D. H. The coevolution of genes and genetic codes: Crick’s frozen accident revisited. J. Mol. Evol. 63, 297–313 (2006). (PMID: 1683821710.1007/s00239-004-0176-7)
Koonin, E. V. & Novozhilov, A. S. Origin and evolution of the genetic code: the universal enigma. IUBMB Life 61, 99–111 (2009). (PMID: 19117371329346810.1002/iub.146)
Lobanov, A. V. et al. Position-dependent termination and widespread obligatory frameshifting in Euplotes translation. Nat. Struct. Mol. Biol. 24, 61–68 (2017). (PMID: 2787083410.1038/nsmb.3330)
Shulgina, Y. & Eddy, S. R. A computational screen for alternative genetic codes in over 250,000 genomes. eLife 10, e71402 (2021). (PMID: 34751130862942710.7554/eLife.71402)
Keeling, P. J. Evolution of the genetic code. Curr. Biol. 26, R851–R853 (2016). (PMID: 2767630510.1016/j.cub.2016.08.005)
Baranov, P. V., Atkins, J. F. & Yordanova, M. M. Augmented genetic decoding: global, local and temporal alterations of decoding processes and codon meaning. Nat. Rev. Genet. 16, 517–529 (2015). (PMID: 2626026110.1038/nrg3963)
Keeling, P. J. & Leander, B. S. Characterisation of a non-canonical genetic code in the oxymonad Streblomastix strix. J. Mol. Biol. 326, 1337–1349 (2003). (PMID: 1259524810.1016/S0022-2836(03)00057-3)
Karpov, S. A. et al. Obligately phagotrophic aphelids turned out to branch with the earliest-diverging fungi. Protist 164, 195–205 (2013). (PMID: 2305879310.1016/j.protis.2012.08.001)
Lozupone, C. A., Knight, R. D. & Landweber, L. F. The molecular basis of nuclear genetic code change in ciliates. Curr. Biol. 11, 65–74 (2001). (PMID: 1123112210.1016/S0960-9822(01)00028-8)
Sanchez-Silva, R., Villalobo, E., Morin, L. & Torres, A. A new noncanonical nuclear genetic code: translation of UAA into glutamate. Curr. Biol. 13, 442–447 (2003). (PMID: 1262019610.1016/S0960-9822(03)00126-X)
Osawa, S. & Jukes, T. H. Codon reassignment (codon capture) in evolution. J. Mol. Evol. 28, 271–278 (1989). (PMID: 249968310.1007/BF02103422)
Schultz, D. W. & Yarus, M. Transfer RNA mutation and the malleability of the genetic code. J. Mol. Biol. 235, 1377–1380 (1994). (PMID: 810707910.1006/jmbi.1994.1094)
Sengupta, S. & Higgs, P. G. A unified model of codon reassignment in alternative genetic codes. Genetics 170, 831–840 (2005). (PMID: 15781705145041210.1534/genetics.104.037887)
Lukeš, J. et al. Trypanosomatids are much more than just trypanosomes: clues from the expanded family tree. Trends Parasitol. 34, 466–480 (2018). (PMID: 2960554610.1016/j.pt.2018.03.002)
Maslov, D. A. et al. Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology 146, 1–27 (2019). (PMID: 2989879210.1017/S0031182018000951)
He, F. & Jacobson, A. Nonsense-mediated mRNA decay: degradation of defective transcripts is only part of the story. Annu. Rev. Genet. 49, 339–366 (2015). (PMID: 26436458483794510.1146/annurev-genet-112414-054639)
Baejen, C. et al. Transcriptome maps of mRNP biogenesis factors define pre-mRNA recognition. Mol. Cell 55, 745–757 (2014). (PMID: 2519236410.1016/j.molcel.2014.08.005)
Kini, H. K., Silverman, I. M., Ji, X., Gregory, B. D. & Liebhaber, S. A. Cytoplasmic poly(A) binding protein-1 binds to genomically encoded sequences within mammalian mRNAs. RNA 22, 61–74 (2016). (PMID: 26554031469183510.1261/rna.053447.115)
Sladic, R. T., Lagnado, C. A., Bagley, C. J. & Goodall, G. J. Human PABP binds AU-rich RNA via RNA-binding domains 3 and 4. Eur. J. Biochem. 271, 450–457 (2004). (PMID: 1471771210.1046/j.1432-1033.2003.03945.x)
Alfonzo, J. D., Blanc, V., Estevez, A. M., Rubio, M. A. & Simpson, L. C to U editing of the anticodon of imported mitochondrial tRNA(Trp) allows decoding of the UGA stop codon in Leishmania tarentolae. EMBO J. 18, 7056–7062 (1999). (PMID: 10601027117176810.1093/emboj/18.24.7056)
Wohlgamuth-Benedum, J. M. et al. Thiolation controls cytoplasmic tRNA stability and acts as a negative determinant for tRNA editing in mitochondria. J. Biol. Chem. 284, 23947–23953 (2009). (PMID: 19574216278198810.1074/jbc.M109.029421)
Paris, Z. et al. A mitochondrial cytidine deaminase is responsible for C to U editing of tRNA(Trp) to decode the UGA codon in Trypanosoma brucei. RNA Biol. 18, 278–286 (2021).
Hirsh, D. Tryptophan transfer RNA as the UGA suppressor. J. Mol. Biol. 58, 439–458 (1971). (PMID: 493341210.1016/0022-2836(71)90362-7)
Nenarokova, A. & Paris, Z. tRNAseq analysis of Blastocrithidia nonstop. figshare https://doi.org/10.6084/m9.figshare.17934200.v2 (2022).
Chan, P. P. & Lowe, T. M. tRNAscan-SE: searching for tRNA genes in genomic sequences. Methods Mol. Biol. 1962, 1–14 (2019). (PMID: 31020551676840910.1007/978-1-4939-9173-0_1)
Laslett, D. & Canback, B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32, 11–16 (2004). (PMID: 1470433837326510.1093/nar/gkh152)
Van Haute, L., Powell, C. A. & Minczuk, M. Dealing with an unconventional genetic code in mitochondria: the biogenesis and pathogenic defects of the 5-formylcytosine modification in mitochondrial tRNA(Met). Biomolecules 7, 24 (2017). (PMID: 28257121537273610.3390/biom7010024)
Agris, P. F. et al. Celebrating wobble decoding: half a century and still much is new. RNA Biol 15, 537–553 (2018). (PMID: 2881293210.1080/15476286.2017.1356562)
Beznosková, P., Gunisová, S. & Valášek, L. S. Rules of UGA-N decoding by near-cognate tRNAs and analysis of readthrough on short uORFs in yeast. RNA 22, 456–466 (2016). (PMID: 26759455474882210.1261/rna.054452.115)
Beznosková, P., Pavlíková, Z., Zeman, J., Echeverria Aitken, C. & Valášek, L. S. Yeast applied readthrough inducing system (YARIS): an in vivo assay for the comprehensive study of translational readthrough. Nucleic Acids Res. 47, 6339–6350 (2019). (PMID: 31069379661481610.1093/nar/gkz346)
Pineyro, D., Torres, A. G. & de Pouplana, L. R. In Fungal RNA Biology (eds Sesma, A. & von der Haar, T.) 233–267 (Springer, 2014).
Matheisl, S., Berninghausen, O., Becker, T. & Beckmann, R. Structure of a human translation termination complex. Nucleic Acids Res. 43, 8615–8626 (2015). (PMID: 26384426460532410.1093/nar/gkv909)
Brown, A., Shao, S., Murray, J., Hegde, R. S. & Ramakrishnan, V. Structural basis for stop codon recognition in eukaryotes. Nature 524, 493–496 (2015). (PMID: 26245381459147110.1038/nature14896)
Blanchet, S. et al. New insights into stop codon recognition by eRF1. Nucleic Acids Res. 43, 3298–3308 (2015). (PMID: 25735746438106410.1093/nar/gkv154)
Eliseev, B., Kryuchkova, P., Alkalaeva, E. & Frolova, L. A single amino acid change of translation termination factor eRF1 switches between bipotent and omnipotent stop-codon specificity. Nucleic Acids Res. 39, 599–608 (2011). (PMID: 2086099610.1093/nar/gkq759)
Xue, H., Shen, W., Giege, R. & Wong, J. T. Identity elements of tRNA(Trp). Identification and evolutionary conservation. J. Biol. Chem. 268, 9316–9322 (1993). (PMID: 848662710.1016/S0021-9258(18)98352-3)
Ulmasov, B., Topin, A., Chen, Z., He, S. H. & Folk, W. R. Identity elements and aminoacylation of plant tRNATrp. Nucleic Acids Res. 26, 5139–5141 (1998). (PMID: 980131114796110.1093/nar/26.22.5139)
Sekine, S. et al. Major identity determinants in the “augmented D helix” of tRNA(Glu) from Escherichia coli. J. Mol. Biol. 256, 685–700 (1996). (PMID: 864259110.1006/jmbi.1996.0118)
Robertson, W. E. et al. Sense codon reassignment enables viral resistance and encoded polymer synthesis. Science 372, 1057–1062 (2021). (PMID: 34083482761138010.1126/science.abg3029)
Grybchuk, D. et al. Viral discovery and diversity in trypanosomatid protozoa with a focus on relatives of the human parasite Leishmania. Proc. Natl Acad. Sci. USA 115, E506–E515 (2018). (PMID: 2928475410.1073/pnas.1717806115)
Chin, J. W. Expanding and reprogramming the genetic code. Nature 550, 53–60 (2017). (PMID: 2898064110.1038/nature24031)
Wang, J. et al. AAV-delivered suppressor tRNA overcomes a nonsense mutation in mice. Nature 604, 343–348 (2022). (PMID: 35322228944671610.1038/s41586-022-04533-3)
Janssen, B. D., Diner, E. J. & Hayes, C. S. Analysis of aminoacyl- and peptidyl-tRNAs by gel electrophoresis. Methods Mol. Biol. 905, 291–309 (2012). (PMID: 227360123682404)
Grentzmann, G., Ingram, J. A., Kelly, P. J., Gesteland, R. F. & Atkins, J. F. A dual-luciferase reporter system for studying recoding signals. RNA 4, 479–486 (1998). (PMID: 96302531369633)
Muhlrad, D. & Parker, R. Recognition of yeast mRNAs as “nonsense containing” leads to both inhibition of mRNA translation and mRNA degradation: implications for the control of mRNA decapping. Mol. Biol. Cell 10, 3971–3978 (1999). (PMID: 105642842569210.1091/mbc.10.11.3971)
Loughran, G., Howard, M. T., Firth, A. E. & Atkins, J. F. Avoidance of reporter assay distortions from fused dual reporters. RNA 23, 1285–1289 (2017). (PMID: 28442579551307210.1261/rna.061051.117)
Ross, R., Cao, X., Yu, N. & Limbach, P. A. Sequence mapping of transfer RNA chemical modifications by liquid chromatography tandem mass spectrometry. Methods 107, 73–78 (2016). (PMID: 27033178501467110.1016/j.ymeth.2016.03.016)
Beznosková, P. et al. Translation initiation factors eIF3 and HCR1 control translation termination and stop codon read-through in yeast cells. PLoS Genet. 9, e1003962 (2013). (PMID: 24278036383672310.1371/journal.pgen.1003962)
Kouba, T. et al. Small ribosomal protein RPS0 stimulates translation initiation by mediating 40S-binding of eIF3 via its direct contact with the eIF3a/TIF32 subunit. PLoS ONE 7, e40464 (2012). (PMID: 22792338339037310.1371/journal.pone.0040464)
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022). (PMID: 3472331910.1093/nar/gkab1038)
Nenarokova, A., Záhonová, K. & Nenarokov, S. The high-throughput sequencing datasets. figshare https://doi.org/10.6084/m9.figshare.21401541 (2022).
Nenarokova, A., Záhonová, K. & Nenarokov, S. Additional data and analyses. figshare https://figshare.com/projects/tRNA_anticodon_stem_length_variations_are_critical_for_stop_codon_reassignment/129167 (2022).
Nenarokov, S. & Nenarokova, A. Seraff/blasto: annotator & utilities for Blastocrithidia project (v1.0.2). Zenodo https://doi.org/10.5281/zenodo.7116082 (2022).
Potěšil, D. MS analysis of B. nonstop proteins. figshare https://doi.org/10.6084/m9.figshare.20105417.v2 (2022).
المشرفين على المادة: 0 (Anticodon)
0 (Codon, Terminator)
0 (Peptide Termination Factors)
9014-25-9 (RNA, Transfer)
0 (RNA, Transfer, Trp)
0 (RNA, Transfer, Glu)
تواريخ الأحداث: Date Created: 20230111 Date Completed: 20230201 Latest Revision: 20240118
رمز التحديث: 20240119
DOI: 10.1038/s41586-022-05584-2
PMID: 36631608
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-022-05584-2