دورية أكاديمية

Fucosylation of HLA-DRB1 regulates CD4 + T cell-mediated anti-melanoma immunity and enhances immunotherapy efficacy.

التفاصيل البيبلوغرافية
العنوان: Fucosylation of HLA-DRB1 regulates CD4 + T cell-mediated anti-melanoma immunity and enhances immunotherapy efficacy.
المؤلفون: Lester DK; Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.; Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA.; Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA., Burton C; Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.; Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA.; Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.; Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.; Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA., Gardner A; Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA.; Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.; Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA., Innamarato P; Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA.; Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.; Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA., Kodumudi K; Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.; Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA., Liu Q; Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.; Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA.; Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA., Adhikari E; Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.; Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA.; Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA., Ming Q; Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.; Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA., Williamson DB; Complex Carbohydrate Research Center, the University of Georgia, Athens, GA, USA., Frederick DT; Department of Surgery, Massachusetts General Hospital, Boston, MA, USA., Sharova T; Department of Surgery, Massachusetts General Hospital, Boston, MA, USA., White MG; Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX, USA., Markowitz J; Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.; Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA., Cao B; Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA., Nguyen J; Advanced Analytical and Digital Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA., Johnson J; Department of Analytic Microscopy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA., Beatty M; Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.; Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA., Mockabee-Macias A; Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.; Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA., Mercurio M; Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.; Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA., Watson G; Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.; Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA., Chen PL; Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA., McCarthy S; Advanced Analytical and Digital Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA., MoranSegura C; Advanced Analytical and Digital Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA., Messina J; Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA., Thomas KL; Department of Diagnostic Imaging, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA., Darville L; Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA., Izumi V; Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA., Koomen JM; Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.; Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA., Pilon-Thomas SA; Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.; Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA., Ruffell B; Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.; Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA., Luca VC; Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.; Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA., Haltiwanger RS; Complex Carbohydrate Research Center, the University of Georgia, Athens, GA, USA., Wang X; Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA., Wargo JA; Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX, USA.; Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX, USA., Boland GM; Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.; Broad Institute of Harvard and Massachusetts Institute of Technology, Massachusetts General Hospital, Boston, MA, USA., Lau EK; Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA. eric.lau@moffitt.org.; Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA. eric.lau@moffitt.org.
المصدر: Nature cancer [Nat Cancer] 2023 Feb; Vol. 4 (2), pp. 222-239. Date of Electronic Publication: 2023 Jan 23.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101761119 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2662-1347 (Electronic) Linking ISSN: 26621347 NLM ISO Abbreviation: Nat Cancer Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Publishing Group, [2020]-
مواضيع طبية MeSH: Fucose*/metabolism , Melanoma*/drug therapy, Humans ; HLA-DRB1 Chains/genetics ; HLA-DRB1 Chains/metabolism ; Immunotherapy ; CD4-Positive T-Lymphocytes/metabolism ; CD4-Positive T-Lymphocytes/pathology
مستخلص: Immunotherapy efficacy is limited in melanoma, and combinations of immunotherapies with other modalities have yielded limited improvements but also adverse events requiring cessation of treatment. In addition to ineffective patient stratification, efficacy is impaired by paucity of intratumoral immune cells (itICs); thus, effective strategies to safely increase itICs are needed. We report that dietary administration of L-fucose induces fucosylation and cell surface enrichment of the major histocompatibility complex (MHC)-II protein HLA-DRB1 in melanoma cells, triggering CD4 + T cell-mediated increases in itICs and anti-tumor immunity, enhancing immune checkpoint blockade responses. Melanoma fucosylation and fucosylated HLA-DRB1 associate with intratumoral T cell abundance and anti-programmed cell death protein 1 (PD1) responder status in patient melanoma specimens, suggesting the potential use of melanoma fucosylation as a strategy for stratifying patients for immunotherapies. Our findings demonstrate that fucosylation is a key mediator of anti-tumor immunity and, importantly, suggest that L-fucose is a powerful agent for safely increasing itICs and immunotherapy efficacy in melanoma.
(© 2023. The Author(s).)
References: Weber, J. S. et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 16, 375–384 (2015). (PMID: 2579541010.1016/S1470-2045(15)70076-8)
Chacon, J. A. et al. Manipulating the tumor microenvironment ex vivo for enhanced expansion of tumor-infiltrating lymphocytes for adoptive cell therapy. Clin. Cancer Res. 21, 611–621 (2015). (PMID: 2547299810.1158/1078-0432.CCR-14-1934)
Tawbi, H. A. et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N. Engl. J. Med. 386, 24–34 (2022). (PMID: 34986285984451310.1056/NEJMoa2109970)
Spitzer, M. H. et al. Systemic immunity is required for effective cancer immunotherapy. Cell 168, 487–502 (2017). (PMID: 28111070531282310.1016/j.cell.2016.12.022)
Schneider, M., Al-Shareffi, E. & Haltiwanger, R. S. Biological functions of fucose in mammals. Glycobiology 27, 601–618 (2017). (PMID: 28430973545854310.1093/glycob/cwx034)
Marth, J. D. & Grewal, P. K. Mammalian glycosylation in immunity. Nat. Rev. Immunol. 8, 874–887 (2008). (PMID: 18846099276877010.1038/nri2417)
Keeley, T. S., Yang, S. & Lau, E. The diverse contributions of fucose linkages in cancer. Cancers 11, 1241 (2019). (PMID: 31450600676955610.3390/cancers11091241)
Adhikari, E. et al. L-fucose, a sugary regulator of antitumor immunity and immunotherapies. Mol. Carcinog. 61, 439–453 (2022).
Lau, E. et al. The transcription factor ATF2 promotes melanoma metastasis by suppressing protein fucosylation. Sci. Signal. 8, ra124 (2015). (PMID: 26645581481809510.1126/scisignal.aac6479)
Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015). (PMID: 26193342485285710.1038/nm.3909)
Alspach, E. et al. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature 574, 696–701 (2019). (PMID: 31645760685857210.1038/s41586-019-1671-8)
Knight, D. A. et al. Host immunity contributes to the anti-melanoma activity of BRAF inhibitors. J. Clin. Invest. 123, 1371–1381 (2013). (PMID: 23454771358213910.1172/JCI66236)
Kennedy, R. & Celis, E. Multiple roles for CD4 + T cells in anti-tumor immune responses. Immunol. Rev. 222, 129–144 (2008). (PMID: 1836399810.1111/j.1600-065X.2008.00616.x)
Lim, C. J. et al. Integrin-mediated protein kinase A activation at the leading edge of migrating cells. Mol. Biol. Cell 19, 4930–4941 (2008). (PMID: 18784251257514310.1091/mbc.e08-06-0564)
del Pozo, M. A., Sanchez-Mateos, P., Nieto, M. & Sanchez-Madrid, F. Chemokines regulate cellular polarization and adhesion receptor redistribution during lymphocyte interaction with endothelium and extracellular matrix. Involvement of cAMP signaling pathway. J. Cell Biol. 131, 495–508 (1995). (PMID: 759317410.1083/jcb.131.2.495)
Kumari, S. et al. Cytoskeletal tension actively sustains the migratory T-cell synaptic contact. EMBO J. 39, e102783 (2020). (PMID: 31894880704981710.15252/embj.2019102783)
Oberprieler, N. G. et al. High-resolution mapping of prostaglandin E2-dependent signaling networks identifies a constitutively active PKA signaling node in CD8 + CD45RO + T cells. Blood 116, 2253–2265 (2010). (PMID: 2055861510.1182/blood-2010-01-266650)
Binnewies, M. et al. Unleashing type-2 dendritic cells to drive protective antitumor CD4 + T cell immunity. Cell 177, 556–571 (2019). (PMID: 30955881695410810.1016/j.cell.2019.02.005)
Tay, R. E., Richardson, E. K. & Toh, H. C. Revisiting the role of CD4 + T cells in cancer immunotherapy—new insights into old paradigms. Cancer Gene Ther. 28, 5–17 (2021). (PMID: 3245748710.1038/s41417-020-0183-x)
Bajana, S. et al. Differential CD4 + T-cell memory responses induced by two subsets of human monocyte-derived dendritic cells. Immunology 122, 381–393 (2007). (PMID: 17608690226602910.1111/j.1365-2567.2007.02650.x)
Kramer, A., Green, J., Pollard, J. Jr. & Tugendreich, S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 30, 523–530 (2014). (PMID: 2433680510.1093/bioinformatics/btt703)
Rossjohn, J. et al. T cell antigen receptor recognition of antigen-presenting molecules. Annu. Rev. Immunol. 33, 169–200 (2015). (PMID: 2549333310.1146/annurev-immunol-032414-112334)
Orczyk-Pawilowicz, M., Augustyniak, D., Hirnle, L. & Katnik-Prastowska, I. Lectin-based analysis of fucose and sialic acid expressions on human amniotic IgA during normal pregnancy. Glycoconj. J. 30, 599–608 (2013). (PMID: 2325079510.1007/s10719-012-9460-8)
Bastian, K., Scott, E., Elliott, D. J. & Munkley, J. FUT8 α-(1,6)-fucosyltransferase in cancer. Int. J. Mol. Sci. 22, 455 (2021). (PMID: 33466384779560610.3390/ijms22010455)
Hashim, O. H., Jayapalan, J. J. & Lee, C. S. Lectins: an effective tool for screening of potential cancer biomarkers. PeerJ 5, e3784 (2017). (PMID: 28894650559207910.7717/peerj.3784)
Nonaka, M. et al. Mannan-binding protein, a C-type serum lectin, recognizes primary colorectal carcinomas through tumor-associated Lewis glycans. J. Immunol. 192, 1294–1301 (2014). (PMID: 2439121810.4049/jimmunol.1203023)
Osuga, T. et al. Relationship between increased fucosylation and metastatic potential in colorectal cancer. J. Natl Cancer Inst. 108, djw038 (2016).
Zou, X. et al. A standardized method for lectin microarray-based tissue glycome mapping. Sci. Rep. 7, 43560 (2017). (PMID: 28262709533790510.1038/srep43560)
Yuhki, N. et al. Comparative genome organization of human, murine, and feline MHC class II region. Genome Res. 13, 1169–1179 (2003). (PMID: 1274302340364510.1101/gr.976103)
Chang, C. S., Brossay, L., Kronenberg, M. & Kane, K. P. The murine nonclassical class I major histocompatibility complex-like CD1.1 molecule protects target cells from lymphokine-activated killer cell cytolysis. J. Exp. Med. 189, 483–491 (1999). (PMID: 9927510219290910.1084/jem.189.3.483)
Raulet, D. H. et al. Specificity, tolerance and developmental regulation of natural killer cells defined by expression of class I-specific Ly49 receptors. Immunol. Rev. 155, 41–52 (1997). (PMID: 905988110.1111/j.1600-065X.1997.tb00938.x)
Gay, D. et al. Functional interaction between human T-cell protein CD4 and the major histocompatibility complex HLA-DR antigen. Nature 328, 626–629 (1987). (PMID: 311258210.1038/328626a0)
Walser-Kuntz, D. R., Weyand, C. M., Fulbright, J. W., Moore, S. B. & Goronzy, J. J. HLA-DRB1 molecules and antigenic experience shape the repertoire of CD4 T cells. Hum. Immunol. 44, 203–209 (1995). (PMID: 877063310.1016/0198-8859(95)00109-3)
Fleury, S. et al. HLA-DR polymorphism affects the interaction with CD4. J. Exp. Med. 182, 733–741 (1995). (PMID: 765048010.1084/jem.182.3.733)
Steentoft, C. et al. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J. 32, 1478–1488 (2013). (PMID: 23584533365546810.1038/emboj.2013.79)
Stern, L. J. et al. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 368, 215–221 (1994). (PMID: 814581910.1038/368215a0)
Lenertz, L. Y. et al. Mutation of putative N-linked glycosylation sites on the human nucleotide receptor P2X 7 reveals a key residue important for receptor function. Biochemistry 49, 4611–4619 (2010). (PMID: 2045022710.1021/bi902083n)
Tsiakas, K. et al. Mutation of the glycosylated asparagine residue 286 in human CLN2 protein results in loss of enzymatic activity. Glycobiology 14, 1C–5C (2004). (PMID: 1473672810.1093/glycob/cwh054)
Sun, J., Boado, R. J., Pardridge, W. M. & Sumbria, R. K. Plasma pharmacokinetics of high-affinity transferrin receptor antibody–erythropoietin fusion protein is a function of effector attenuation in mice. Mol. Pharm. 16, 3534–3543 (2019). (PMID: 31199881668482010.1021/acs.molpharmaceut.9b00369)
Rillahan, C. D. et al. Global metabolic inhibitors of sialyl- and fucosyltransferases remodel the glycome. Nat. Chem. Biol. 8, 661–668 (2012). (PMID: 22683610342741010.1038/nchembio.999)
Anderson, K. S. & Cresswell, P. A role for calnexin (IP90) in the assembly of class II MHC molecules. EMBO J. 13, 675–682 (1994). (PMID: 831391239485810.1002/j.1460-2075.1994.tb06306.x)
Johnson, D. B. et al. Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy. Nat. Commun. 7, 10582 (2016). (PMID: 26822383474018410.1038/ncomms10582)
Rodig, S. J. et al. MHC proteins confer differential sensitivity to CTLA-4 and PD-1 blockade in untreated metastatic melanoma. Sci. Transl. Med. 10, eaar3342 (2018). (PMID: 3002188610.1126/scitranslmed.aar3342)
Gellrich, F. F., Schmitz, M., Beissert, S. & Meier, F. Anti-PD-1 and novel combinations in the treatment of melanoma—an update. J. Clin. Med. 9, 223 (2020). (PMID: 31947592701951110.3390/jcm9010223)
Zuazo, M. et al. Functional systemic CD4 immunity is required for clinical responses to PD-L1/PD-1 blockade therapy. EMBO Mol. Med. 11, e10293 (2019). (PMID: 31273938660991010.15252/emmm.201910293)
Pirozyan, M. R. et al. Pretreatment innate cell populations and CD4 T cells in blood are associated with response to immune checkpoint blockade in melanoma patients. Front. Immunol. 11, 372 (2020). (PMID: 32210968707615310.3389/fimmu.2020.00372)
Oh, D. Y. et al. Intratumoral CD4 + T cells mediate anti-tumor cytotoxicity in human bladder cancer. Cell 181, 1612–1625 (2020). (PMID: 32497499732188510.1016/j.cell.2020.05.017)
Tay, R. E., Richardson, E. K. & Toh, H. C. Revisiting the role of CD4 + T cells in cancer immunotherapy—new insights into old paradigms. Cancer Gene Ther. 28, 5–17 (2020).
Kagamu, H. et al. CD4 + T-cell immunity in the peripheral blood correlates with response to anti-PD-1 therapy. Cancer Immunol. Res. 8, 334–344 (2020). (PMID: 3187112210.1158/2326-6066.CIR-19-0574)
Alam, M. S. Proximity ligation assay (PLA). Curr. Protoc. Immunol. 123, e58 (2018). (PMID: 30238640620591610.1002/cpim.58)
Norton, P. et al. Development and application of a novel recombinant Aleuria aurantia lectin with enhanced core fucose binding for identification of glycoprotein biomarkers of hepatocellular carcinoma. Proteomics 16, 3126–3136 (2016). (PMID: 27650323586970610.1002/pmic.201600064)
Etzioni, A. & Tonetti, M. Fucose supplementation in leukocyte adhesion deficiency type II. Blood 95, 3641–3643 (2000). (PMID: 1087755410.1182/blood.V95.11.3641.011a52g_3641_3643)
Marquardt, T. et al. Correction of leukocyte adhesion deficiency type II with oral fucose. Blood 94, 3976–3985 (1999). (PMID: 1059004110.1182/blood.V94.12.3976)
Liang, W. et al. Core fucosylation of the T cell receptor is required for T cell activation. Front. Immunol. 9, 78 (2018). (PMID: 29434598579688810.3389/fimmu.2018.00078)
Okada, M. et al. Blockage of core fucosylation reduces cell-surface expression of PD-1 and promotes anti-tumor immune responses of T cells. Cell Rep. 20, 1017–1028 (2017). (PMID: 2876818810.1016/j.celrep.2017.07.027)
Alatrash, G. et al. Fucosylation enhances the efficacy of adoptively transferred antigen-specific cytotoxic T lymphocytes. Clin. Cancer Res. 25, 2610–2620 (2019). (PMID: 30647079646781110.1158/1078-0432.CCR-18-1527)
Nordenfelt, P., Elliott, H. L. & Springer, T. A. Coordinated integrin activation by actin-dependent force during T-cell migration. Nat. Commun. 7, 13119 (2016). (PMID: 27721490506255910.1038/ncomms13119)
Keren, L. et al. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell 174, 1373–1387 (2018). (PMID: 30193111613207210.1016/j.cell.2018.08.039)
Nestarenkaite, A. et al. Immuno-interface score to predict outcome in colorectal cancer independent of microsatellite instability status. Cancers 12, 2902 (2020). (PMID: 33050344760099210.3390/cancers12102902)
O’Malley, D. P. et al. Immunohistochemical detection of PD-L1 among diverse human neoplasms in a reference laboratory: observations based upon 62,896 cases. Mod. Pathol. 32, 929–942 (2019). (PMID: 30760860676064310.1038/s41379-019-0210-3)
Yang, X. A public genome-scale lentiviral expression library of human ORFs. Nat. Methods 8, 659–661 (2011). (PMID: 21706014323413510.1038/nmeth.1638)
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008). (PMID: 1902991010.1038/nbt.1511)
Maletzki, C. et al. NSG mice as hosts for oncological precision medicine. Lab. Invest. 100, 27–37 (2020). (PMID: 3140988610.1038/s41374-019-0298-6)
Grabinger, T. et al. Alleviation of intestinal inflammation by oral supplementation with 2-fucosyllactose in mice. Front. Microbiol. 10, 1385 (2019). (PMID: 31275292659306910.3389/fmicb.2019.01385)
Smith, P. L. et al. Conditional control of selectin ligand expression and global fucosylation events in mice with a targeted mutation at the FX locus. J. Cell Biol. 158, 801–815 (2002). (PMID: 12186857217402710.1083/jcb.200203125)
Wang, H. et al. D-mannose ameliorates autoimmune phenotypes in mouse models of lupus. BMC Immunol. 22, 1 (2021). (PMID: 33402096778645910.1186/s12865-020-00392-7)
Wang, Y. et al. Loss of α1,6-fucosyltransferase suppressed liver regeneration: implication of core fucose in the regulation of growth factor receptor-mediated cellular signaling. Sci. Rep. 5, 8264 (2015). (PMID: 25652335431769510.1038/srep08264)
Zhang, D. et al. D-mannose induces regulatory T cells and suppresses immunopathology. Nat. Med. 23, 1036–1045 (2017). (PMID: 2875905210.1038/nm.4375)
Zhi, L. et al. FTY720 blocks egress of T cells in part by abrogation of their adhesion on the lymph node sinus. J. Immunol. 187, 2244–2251 (2011). (PMID: 2178844110.4049/jimmunol.1100670)
معلومات مُعتمدة: R01 CA241559 United States CA NCI NIH HHS; R00 CA172705 United States CA NCI NIH HHS; K08 CA252164 United States CA NCI NIH HHS; R01 GM061126 United States GM NIGMS NIH HHS; K99 CA172705 United States CA NCI NIH HHS; P30 CA076292 United States CA NCI NIH HHS
المشرفين على المادة: 0 (HLA-DRB1 Chains)
28RYY2IV3F (Fucose)
تواريخ الأحداث: Date Created: 20230123 Date Completed: 20230301 Latest Revision: 20240428
رمز التحديث: 20240428
مُعرف محوري في PubMed: PMC9970875
DOI: 10.1038/s43018-022-00506-7
PMID: 36690875
قاعدة البيانات: MEDLINE