دورية أكاديمية

Antifungal activity of essential oils and their combinations against storage fungi.

التفاصيل البيبلوغرافية
العنوان: Antifungal activity of essential oils and their combinations against storage fungi.
المؤلفون: Zimmermann RC; Department of Basic Pathology, Laboratory of Agricultural Entomology 'Prof. A. M. da Costa Lima, Federal University of Paraná, Caixa Postal 19031, Curitiba, Paraná, CEP 81531-980, Brazil. rubenscandidoz@gmail.com., Poitevin CG; Department of Basic Pathology, Laboratory of Agricultural Entomology 'Prof. A. M. da Costa Lima, Federal University of Paraná, Caixa Postal 19031, Curitiba, Paraná, CEP 81531-980, Brazil., da Luz TS; Department of Basic Pathology, Laboratory of Agricultural Entomology 'Prof. A. M. da Costa Lima, Federal University of Paraná, Caixa Postal 19031, Curitiba, Paraná, CEP 81531-980, Brazil., Mazarotto EJ; Department of Basic Pathology, Laboratory of Agricultural Entomology 'Prof. A. M. da Costa Lima, Federal University of Paraná, Caixa Postal 19031, Curitiba, Paraná, CEP 81531-980, Brazil., Furuie JL; Department of Basic Pathology, Laboratory of Agricultural Entomology 'Prof. A. M. da Costa Lima, Federal University of Paraná, Caixa Postal 19031, Curitiba, Paraná, CEP 81531-980, Brazil., Martins CEN; Department of Veterinary Medicine, Catarinense Federal Institute, Araquari, SC, Brazil., do Amaral W; Department of Chemical Engineering, Federal University of Paraná, Curitiba, Paraná, Brazil., Cipriano RR; Laboratory of Phytotechnology and Crop Protection, Federal University of Paraná, Curitiba, PR, Brazil., da Rosa JM; Department of Basic Pathology, Laboratory of Agricultural Entomology 'Prof. A. M. da Costa Lima, Federal University of Paraná, Caixa Postal 19031, Curitiba, Paraná, CEP 81531-980, Brazil., Pimentel IC; Department of Basic Pathology, Laboratory of Agricultural Entomology 'Prof. A. M. da Costa Lima, Federal University of Paraná, Caixa Postal 19031, Curitiba, Paraná, CEP 81531-980, Brazil., Zawadneak MAC; Department of Basic Pathology, Laboratory of Agricultural Entomology 'Prof. A. M. da Costa Lima, Federal University of Paraná, Caixa Postal 19031, Curitiba, Paraná, CEP 81531-980, Brazil.
المصدر: Environmental science and pollution research international [Environ Sci Pollut Res Int] 2023 Apr; Vol. 30 (16), pp. 48559-48570. Date of Electronic Publication: 2023 Feb 10.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
أسماء مطبوعة: Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
مواضيع طبية MeSH: Oils, Volatile*/chemistry , Lamiaceae*, Antifungal Agents/pharmacology ; Fungi ; Aspergillus flavus ; Microbial Sensitivity Tests ; Plant Oils/pharmacology
مستخلص: We aimed to evaluate the fungicidal activity of essential oils (EOs) from Baccharis dracunculifolia (Asteraceae), Baccharis uncinella (Asteraceae), Mentha arvensis (Lamiaceae), Salvia officinalis (Lamiaceae), Melaleuca alternifolia (Myrtaceae), and Cymbopogon nardus (Poaceae) in the in vitro control of mycotoxin-producing strains of Aspergillus niger, Aspergillus nomius, Aspergillus flavus, and Fusarium graminearum. EOs' chemical composition was analyzed by gas chromatography-mass spectrometry, and a total of 19, 21, 18, 20, 17, and 15 compounds were identified in B. dracunculifolia, B. uncinella, S. officinalis, M. arvensis, M. alternifolia, and C. nardus EOs, respectively. Contact and volatilization bioassays were performed, for which M. alternifolia and C. nardus EOs had the greatest fungicidal effect (> 90%). Therefore, these EOs were evaluated for minimum inhibitory concentration, medium inhibitory concentration, and sporulation. Effects from the combined use of EOs were also evaluated. EOs interacted in combination, displaying an additive effect against F. graminearum and A. flavus and an antagonistic effect against the remaining isolates. We conclude that C. nardus EO was effective in the control of storage pathogens and that combined EOs can improve their antifungal effects.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Abu-Darwish MS, Cabral C, Ferreira IV, et al (2013) Essential oil of common sage (Salvia officinalis L.) from Jordan: assessment of safety in mammalian cells and its antifungal and anti-inflammatory potential. Biomed Res Int 2013. https://doi.org/10.1155/2013/538940.
Adams RP (2017) Identification of essential oil components by gas chromatography/mass spectorscopy, 5th edn. Texensis Publishing, New York.
AGROFIT (2021) Consulta de Produtos Formulados. http://agrofit.agricultura.gov.br/agrofit&#95;cons/principal&#95;agrofit&#95;cons . Accessed in 18 May 2021.
Aguiar RWDS, Ootani MA, Ascencio SD, et al (2014) Fumigant antifungal activity of Corymbia citriodora and Cymbopogon nardus essential oils and citronellal against three fungal species. Sci World J 2014. https://doi.org/10.1155/2014/492138.
Aisyah Y, Yunita D, Amanda A (2021) Antimicrobial activity of patchouli (Pogostemon cablin Benth) citronella (Cymbopogon nardus), and nutmeg (Myristica fragrans) essential oil and their mixtures against pathogenic and food spoilage microbes. IOP Conf Ser Earth Environ Sci 667. https://doi.org/10.1088/1755-1315/667/1/012020.
Alexa E, Sumalan RM, Danciu C et al (2018) Synergistic antifungal, allelopatic and anti-proliferative potential of Salvia officinalis L., and Thymus vulgaris L. Essential oils. Molecules 23:1–15. https://doi.org/10.3390/molecules23010185. (PMID: 10.3390/molecules23010185)
Alonso-Gato M, Astray G, Mejuto JC, Simal-Gandara J (2021) Essential oils as antimicrobials in crop protection. Antibiotics 10:1–12. https://doi.org/10.3390/antibiotics10010034. (PMID: 10.3390/antibiotics10010034)
Anžlovar S, Likar M, Koce JD (2017) Antifungal potential of thyme essential oil as a preservative for storage of wheat seeds. Acta Bot Croat 76:64–71. https://doi.org/10.1515/botcro-2016-0044. (PMID: 10.1515/botcro-2016-0044)
Basak S, Guha P (2017) Betel leaf (Piper betle L.) essential oil microemulsion: characterization and antifungal activity on growth, and apparent lag time of Aspergillus flavus in tomato paste. LWT - Food Sci Technol 75:616–623. https://doi.org/10.1016/j.lwt.2016.10.021. (PMID: 10.1016/j.lwt.2016.10.021)
Beyer M, Röding S, Ludewig A, Verreet J-A (2004) Germination and survival of Fusarium graminearum macroconidia as affected by environmental factors. J Phytopathol 152:92–97. https://doi.org/10.1111/j.1439-0434.2003.00807.x. (PMID: 10.1111/j.1439-0434.2003.00807.x)
Borges DF, Lopes EA, Fialho Moraes AR et al (2018) Formulation of botanicals for the control of plant-pathogens: a review. Crop Prot 110:135–140. (PMID: 10.1016/j.cropro.2018.04.003)
Boukaew S, Prasertsan P, Sattayasamitsathit S (2017) Evaluation of antifungal activity of essential oils against aflatoxigenic Aspergillus flavus and their allelopathic activity from fumigation to protect maize seeds during storage. Ind Crops Prod 97:558–566. https://doi.org/10.1016/j.indcrop.2017.01.005. (PMID: 10.1016/j.indcrop.2017.01.005)
Božik M, Císarová M, Tančinová D et al (2017) Selected essential oil vapours inhibit growth of Aspergillus spp. in oats with improved consumer acceptability. Ind Crops Prod 98:146–152. https://doi.org/10.1016/j.indcrop.2016.11.044. (PMID: 10.1016/j.indcrop.2016.11.044)
Cazella LN, Glamoclija J, Soković M et al (2019) Antimicrobial activity of essential oil of Baccharis dracunculifolia DC (Asteraceae) aerial parts at flowering period. Front Plant Sci 10:1–9. https://doi.org/10.3389/fpls.2019.00027. (PMID: 10.3389/fpls.2019.00027)
Chelaghema A, Durand N, Servent A et al (2022) Antifungal and antimycotoxic activities of 3 essential oils against 3 mycotoxinogenic fungi. Arch Microbiol 204:1–16. https://doi.org/10.1007/s00203-022-03115-1. (PMID: 10.1007/s00203-022-03115-1)
Císarová M, Tančinová D, Medo J, Kačániová M (2016) The in vitro effect of selected essential oils on the growth and mycotoxin production of Aspergillus species. J Environ Sci Heal - Part B Pestic Food Contam Agric Wastes 51:668–674. https://doi.org/10.1080/03601234.2016.1191887. (PMID: 10.1080/03601234.2016.1191887)
da Bomfim NS, Kohiyama CY, Nakasugi LP et al (2020) Antifungal and antiaflatoxigenic activity of rosemary essential oil (Rosmarinus officinalis L.) against Aspergillus flavus. Food Addit Contam - Part A Chem Anal Control Expo Risk Assess 37:153–161. https://doi.org/10.1080/19440049.2019.1678771. (PMID: 10.1080/19440049.2019.1678771)
Dambolena JS, López AG, Meriles JM et al (2012) Inhibitory effect of 10 natural phenolic compounds on Fusarium verticillioides. A structure-property-activity relationship study. Food Control 28:163–170. https://doi.org/10.1016/j.foodcont.2012.05.008. (PMID: 10.1016/j.foodcont.2012.05.008)
Dehghanpour-Farashah S, Taheri P (2016) Antifungal and antiaflatoxigenic effects of Mentha longifolia essential oil against Aspergillus flavus. Int J New Technol Res 2:30–39.
Espírito-Santo MM, Madeira BG, Neves FS et al (2003) Sexual differences in reproductive phenology and their consequences for the demography of Baccharis dracunculifolia (Asteraceae), a dioecious tropical shrub. Ann Bot 91:13–19. https://doi.org/10.1093/aob/mcg001. (PMID: 10.1093/aob/mcg001)
Fabiane KC, Ferronatto R, Dos Santos AC, Onofre SB (2008) Physicochemical characteristics of the essential oils of Baccharis dracunculifolia and Baccharis uncinella D.C. (Asteraceae). Brazilian J Pharmacogn 18:197–203. https://doi.org/10.1590/S0102-695X2008000200009. (PMID: 10.1590/S0102-695X2008000200009)
FAO - Food and Agriculture Organization of the United Nations (2020) http://www.fao.org/countryprofiles/index/en/?iso3=BRA . Accessed in 28 Set 2021.
Frizzo CD, Atti-Serafini L, Laguna SE et al (2008) Essential oil variability in Baccharis uncinella DC and Baccharis dracunculifolia DC growing wild in southern Brazil, Bolivia and Uruguay. Flavour Fragr J 23:99–106. https://doi.org/10.1002/ffj.1862. (PMID: 10.1002/ffj.1862)
García-Díaz M, Patiño B, Vázquez C, Gil-Serna J (2019) A novel niosome-encapsulated essential oil formulation to prevent Aspergillus flavus growth and aflatoxin contamination of maize grains during storage. Toxins (Basel) 11. https://doi.org/10.3390/toxins11110646.
Goudoum A, Tinkeu LSN, Ngassoum MB, Mbofung CM (2016) Insecticidal and antifungal properties of essential oil of Bidens Pilosa linn. Var. Radita ( Asteraceae ) Towards Stored Bambara Groundnut Insect and Fungi Pests. Asian J Agric Food Sci 04:66–72.
Hossain F, Follett P, Dang VuK et al (2016) Evidence for synergistic activity of plant-derived essential oils against fungal pathogens of food. Food Microbiol 53:24–30. https://doi.org/10.1016/j.fm.2015.08.006. (PMID: 10.1016/j.fm.2015.08.006)
Hussain AI, Anwar F, Nigam PS et al (2010) Seasonal variation in content, chemical composition and antimicrobial and cytotoxic activities of essential oils from four Mentha species. J Sci Food Agric 90:1827–1836. https://doi.org/10.1002/jsfa.4021. (PMID: 10.1002/jsfa.4021)
Ishaq M, Tahira R, Javed A et al (2017) Lemongrass essential oil as an alternate approach to manage seed associated fungi of wheat and rice. Int J Agric Biol 19:1301–1306. https://doi.org/10.17957/IJAB/15.0278. (PMID: 10.17957/IJAB/15.0278)
Ito FAD, Pimentel IC, Pointevin CG (2019) Niger seed agar as an inductor of sporulation of filamentous fungi with potential in biological control of agricultural diseases and pests. Int J Microbiol Res 11:1509–1513.
Kalagatur NK, Mudili V, Siddaiah C et al (2015) Antagonistic activity of Ocimum sanctum L. essential oil on growth and zearalenone production by Fusarium graminearum in maize grains. Front Microbiol 6:1–11. https://doi.org/10.3389/fmicb.2015.00892. (PMID: 10.3389/fmicb.2015.00892)
Koc F, Kara S (2014) Environmental factors affecting efficacy of some essential oils and potassium sorbate to control growth of Aspergillus flavus, Aspergillus parasiticus on wheat and maize grains. J Agric Sci Technol 16:1325–1334.
Kumar P, Mishra S, Kumar A et al (2017) In vivo and in vitro control activity of plant essential oils against three strains of Aspergillus niger. Environ Sci Pollut Res 24:21948–21959. https://doi.org/10.1007/s11356-017-9730-x. (PMID: 10.1007/s11356-017-9730-x)
Mansour NA, Eldefrawi ME, Toppozada A, Zeid M (1966) Toxicological studies on the egyptian cotton leaf worm, Prodenia litura. VI. Potentiation and Antagonism of Organophosphorus and Carbamate Insecticides. J Econ Entomol 59:307–311. https://doi.org/10.1093/jee/59.2.307. (PMID: 10.1093/jee/59.2.307)
Medjdoub K, Benomari FZ, Djabou N, et al (2019) Antifungal and insecticidal activities of essential oils of four Mentha species. Jundishapur J Nat Pharm Prod In Press 1–7. https://doi.org/10.5812/jjnpp.64165.
Moghadam HD, Sani AM, Sangatash MM (2016) Antifungal activity of essential oil of Ziziphora clinopodioides and the inhibition of aflatoxin B1 production in maize grain. Toxicol Ind Health 32:493–499. https://doi.org/10.1177/0748233713503375. (PMID: 10.1177/0748233713503375)
Morcia C, Malnati M, Terzi V (2012) In vitro antifungal activity of terpinen-4-ol, eugenol, carvone, 1,8-cineole (eucalyptol) and thymol against mycotoxigenic plant pathogens. Food Addit Contam Part A 1–8. https://doi.org/10.1080/19440049.2011.643458.
Morcia C, Tumino G, Ghizzoni R, et al (2017) In vitro evaluation of sub-lethal concentrations of plant-derived antifungal compounds on Fusaria growth and mycotoxin production. Molecules 22. https://doi.org/10.3390/molecules22081271.
Mutlu-Ingok A, Devecioglu D, Dikmetas DN, et al (2020) Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: an updated review. Molecules 25. https://doi.org/10.3390/molecules25204711.
Negasa F, Solomon A, Girma D (2019) Effect of traditional and hermetic bag storage structures on fungus contamination of stored maize grain (Zea mays L.) in Bako, Western Shoa, Ethiopia. African J Food Sci 13:57–64. https://doi.org/10.5897/ajfs2018.1778. (PMID: 10.5897/ajfs2018.1778)
Nesci A, Barra P, Etcheverry M (2011) Integrated management of insect vectors of Aspergillus flavus in stored maize, using synthetic antioxidants and natural phytochemicals. J Stored Prod Res 47:231–237. https://doi.org/10.1016/j.jspr.2011.03.003. (PMID: 10.1016/j.jspr.2011.03.003)
Pandey RR, Dubey RC, Saini S (2010) Phytochemical and antimicrobial studies on essential oils of some aromatic plants. African J Biotechnol 9:4364–4368. https://doi.org/10.5897/AJB10.147. (PMID: 10.5897/AJB10.147)
Pedrotti C, da Silva Ribeiro RT, Schwambach J (2019) Control of postharvest fungal rots in grapes through the use of Baccharis trimera and Baccharis dracunculifolia essential oils. Crop Prot 125:1–7. https://doi.org/10.1016/j.cropro.2019.104912. (PMID: 10.1016/j.cropro.2019.104912)
Perczak A, Gwiazdowska D, Marchwińska K et al (2019) Antifungal activity of selected essential oils against Fusarium culmorum and F. graminearum and their secondary metabolites in wheat seeds. Arch Microbiol 201:1085–1097. https://doi.org/10.1007/s00203-019-01673-5. (PMID: 10.1007/s00203-019-01673-5)
Pizzolitto RP, Jacquat AG, Usseglio VL et al (2020) Quantitative-structure-activity relationship study to predict the antifungal activity of essential oils against Fusarium verticillioides. Food Control 108:106836. https://doi.org/10.1016/j.foodcont.2019.106836. (PMID: 10.1016/j.foodcont.2019.106836)
R Core Team (2019) R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. https://www.r-project.org/.
Rahman M, Sarker SD (2020) Antimicrobial natural products. Annu Rep Med Chem 55:77–113. https://doi.org/10.1016/bs.armc.2020.06.001. (PMID: 10.1016/bs.armc.2020.06.001)
Rasooli I, Rezaei MB, Allameh A (2006) Growth inhibition and morphological alterations of Aspergillus niger by essential oils from Thymus eriocalyx and Thymus x-porlock. Food Control 17:359–364. https://doi.org/10.1016/j.foodcont.2004.12.002. (PMID: 10.1016/j.foodcont.2004.12.002)
Reyes-Jurado F, Franco-Vega A, Ramírez-Corona N et al (2015) Essential oils: antimicrobial activities, extraction methods, and their modeling. Food Eng Rev 7:275–297. https://doi.org/10.1007/s12393-014-9099-2. (PMID: 10.1007/s12393-014-9099-2)
Ribeiro LP, Lovatto M, Vendramim JD (2018) Avaliação da eficácia de duas formulações comerciais de terra de diatomácea no controle do gorgulho-do-milho com base em parâmetros toxicológicos. Agropecuária Catarinense 31:56–60. https://doi.org/10.22491/RAC.2018.v31n1.7. (PMID: 10.22491/RAC.2018.v31n1.7)
Roselló J, Sempere F, Sanz-Berzosa I et al (2015) Antifungal activity and potential use of essential oils against Fusarium culmorum and Fusarium verticillioides. J Essent Oil-Bearing Plants 18:359–367. https://doi.org/10.1080/0972060X.2015.1010601. (PMID: 10.1080/0972060X.2015.1010601)
Sahab AF, Aly S, Hathout AS et al (2014) Application of some plant essential oils to control Fusarium isolates associated with freshly harvested maize in Egypt. J Essent Oil-Bearing Plants 17:1146–1155. https://doi.org/10.1080/0972060X.2014.891447. (PMID: 10.1080/0972060X.2014.891447)
Sawadogo I, Paré A, Kaboré D et al (2022) Antifungal and antiaflatoxinogenic effects of Cymbopogon citratus, Cymbopogon nardus, and Cymbopogon schoenanthus essential oils alone and in combination. J Fungi 8:1–13. https://doi.org/10.3390/jof8020117. (PMID: 10.3390/jof8020117)
Sevik R, Akarca G, Kilinc M, Ascioglu Ç (2021) Chemical composition of tea tree (Melaleuca alternifolia) (Maiden & Betche) cheel essential oil and its antifungal effect on foodborne molds isolated from meat products. J Essent Oil-Bearing Plants 24:561–570. https://doi.org/10.1080/0972060X.2021.1942232. (PMID: 10.1080/0972060X.2021.1942232)
Shin S (2003) Anti-Aspergillus activities of plant essential oils and their combination effects with ketoconazole or amphotericin B. Arch Pharm Res 26:389–393. https://doi.org/10.1007/BF02976696.
Souza DP, Pimentel RBQ, Santos AS et al (2020) Fungicidal properties and insights on the mechanisms of the action of volatile oils from Amazonian Aniba trees. Ind Crops Prod 143:111914. https://doi.org/10.1016/j.indcrop.2019.111914. (PMID: 10.1016/j.indcrop.2019.111914)
Sreenivasa MY, Dass RS, Charith Raj AP et al (2011) Assessment of the growth inhibiting effect of some plant essential oils on different Fusarium species isolated from sorghum and maize grains. J Plant Dis Prot 118:208–213. https://doi.org/10.1007/BF03356405. (PMID: 10.1007/BF03356405)
Sumalan RM, Alexa E, Poiana MA (2013) Assessment of inhibitory potential of essential oils on natural mycoflora and Fusarium mycotoxins production in wheat. Chem Cent J 7:1–12. https://doi.org/10.1186/1752-153X-7-32. (PMID: 10.1186/1752-153X-7-32)
Tang X, Shao YL, Tang YJ, Zhou WW (2018) Antifungal activity of essential oil compounds (geraniol and citral) and inhibitory mechanisms on grain pathogens (Aspergillus flavus and Aspergillus ochraceus). Molecules 23. https://doi.org/10.3390/molecules23092108.
Tralamazza SM, Bemvenuti RH, Zorzete P et al (2016) Fungal diversity and natural occurrence of deoxynivalenol and zearalenone in freshly harvested wheat grains from Brazil. Food Chem 196:445–450. https://doi.org/10.1016/j.foodchem.2015.09.063. (PMID: 10.1016/j.foodchem.2015.09.063)
van den Dool H, Dec. Kratz P (1963) A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. J Chromatogr A 11:463–471. https://doi.org/10.1016/S0021-9673(01)80947-X. (PMID: 10.1016/S0021-9673(01)80947-X)
Vannini AB, Santos TG, Fleming AC et al (2012) Chemical characterization and antimicrobial evaluation of the essential oils from Baccharis uncinella D.C. and Baccharis semiserrata D.C. (Asteraceae). J Essent Oil Res 24:547–554. https://doi.org/10.1080/10412905.2012.728092. (PMID: 10.1080/10412905.2012.728092)
Vasile C, Sivertsvik M, Miteluţ AC, et al (2017) Comparative analysis of the composition and active property evaluation of certain essential oils to assess their potential applications in active food packaging. Materials (Basel) 10. https://doi.org/10.3390/ma10010045.
Venkatesh HN, Sudharshana TN, Abhishek RU et al (2017) Antifungal and antimycotoxigenic properties of chemically characterised essential oil of Boswellia serrata Roxb. ex Colebr. Int J Food Prop 20:1856–1868. https://doi.org/10.1080/10942912.2017.1354882. (PMID: 10.1080/10942912.2017.1354882)
Vilela GR, Almeida GS, D’Arce MABR et al (2009) Activity of essential oil and its major compound, 1,8-cineole, from Eucalyptus globulus Labill., against the storage fungi Aspergillus flavus Link and Aspergillus parasiticus Speare. J Stored Prod Res 45:108–111. https://doi.org/10.1016/j.jspr.2008.10.006. (PMID: 10.1016/j.jspr.2008.10.006)
Xavier VB, Minteguiaga M, Umpiérrez N et al (2017) Olfactometry evaluation and antimicrobial analysis of essential oils from Baccharis dentata (Vell.) G.M. Barroso and Baccharis uncinella DC. J Essent Oil Res 29:137–144. https://doi.org/10.1080/10412905.2016.1212739. (PMID: 10.1080/10412905.2016.1212739)
Xing F, Hua H, Selvaraj JN et al (2014) Growth inhibition and morphological alterations of Fusarium verticillioides by cinnamon oil and cinnamaldehyde. Food Control 46:343–350. https://doi.org/10.1016/j.foodcont.2014.04.037. (PMID: 10.1016/j.foodcont.2014.04.037)
Zimmermann RC, Poitevin CG, Bischoff AM et al (2022) Insecticidal and antifungal activities of Melaleuca rhaphiophylla essential oil against insects and seed-borne pathogens in stored products. Ind Crops Prod 182:114871. https://doi.org/10.1016/j.indcrop.2022.114871. (PMID: 10.1016/j.indcrop.2022.114871)
فهرسة مساهمة: Keywords: Antimicrobial activity; Aspergillus; Chemical composition; Fusarium; Stored products
المشرفين على المادة: 0 (Antifungal Agents)
0 (Oils, Volatile)
0 (Plant Oils)
تواريخ الأحداث: Date Created: 20230210 Date Completed: 20230414 Latest Revision: 20230414
رمز التحديث: 20231215
DOI: 10.1007/s11356-023-25772-5
PMID: 36763278
قاعدة البيانات: MEDLINE
الوصف
تدمد:1614-7499
DOI:10.1007/s11356-023-25772-5