دورية أكاديمية

MORC2 and MAX contributes to the expression of glycolytic enzymes, breast cancer cell proliferation and migration.

التفاصيل البيبلوغرافية
العنوان: MORC2 and MAX contributes to the expression of glycolytic enzymes, breast cancer cell proliferation and migration.
المؤلفون: Guddeti RK; Biology Division, Indian Institute of Science Education and Research (IISER) Tirupati, Mangalam, Tirupati, 517 507, India., Pacharla H; Department of General Medicine, Apollo Hospital, Hyderabad, 500 032, India., Yellapu NK; Department of Biostatistics & Data Science, Rainbow Boulevard, University of Kansas Medical Center, Kansas City, KS, 66160, USA., Karyala P; Department of Biotechnology, Faculty of Life and Allied Health Sciences, Ramaiah University of Applied Sciences, Bengaluru, 560054, India. prashanthi.bt.ls@msruas.ac.in., Pakala SB; Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India. pakalasb@uohyd.ac.in.
المصدر: Medical oncology (Northwood, London, England) [Med Oncol] 2023 Feb 21; Vol. 40 (3), pp. 102. Date of Electronic Publication: 2023 Feb 21.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 9435512 Publication Model: Electronic Cited Medium: Internet ISSN: 1559-131X (Electronic) Linking ISSN: 13570560 NLM ISO Abbreviation: Med Oncol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2011- : New York : Springer
Original Publication: Northwood, Middlesex, England : Science and Technology Letters, c1994-
مواضيع طبية MeSH: Breast Neoplasms*/genetics , Transcription Factors*/genetics, Female ; Humans ; Cell Line, Tumor ; Cell Proliferation/genetics ; Glucose ; Glycolysis
مستخلص: Cancer cell proliferation is a high energy demanding process, where the cancer cells acquire energy by high rates of glycolysis, and this phenomenon is known as the "Warburg effect". Microrchidia 2 (MORC2), an emerging chromatin remodeler, is over expressed in several cancers including breast cancer and found to promote cancer cell proliferation. However, the role of MORC2 in glucose metabolism in cancer cells remains unexplored. In this study, we report that MORC2 interacts indirectly with the genes involved in glucose metabolism via transcription factors MAX (MYC-associated factor X) and MYC. We also found that MORC2 co-localizes and interacts with MAX. Further, we observed a positive correlation of expression of MORC2 with glycolytic enzymes Hexokinase 1 (HK1), Lactate dehydrogenase A (LDHA) and Phosphofructokinase platelet (PFKP) type in multiple cancers. Surprisingly, the knockdown of either MORC2 or MAX not only decreased the expression of glycolytic enzymes but also inhibited breast cancer cell proliferation and migration. Together, these results demonstrate the involvement of the MORC2/MAX signaling axis in the expression of glycolytic enzymes and breast cancer cell proliferation and migration.
(© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. (PMID: 2137623010.1016/j.cell.2011.02.013)
Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12:31–46. (PMID: 3502220410.1158/2159-8290.CD-21-1059)
Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11:325–37. (PMID: 2150897110.1038/nrc3038)
Warburg O. On the origin of cancer cells. Science. 1956;123:309–14. (PMID: 1329868310.1126/science.123.3191.309)
Patra KC, Hay N. The pentose phosphate pathway and cancer. Trends Biochem Sci. 2014;39:347–54. (PMID: 25037503432922710.1016/j.tibs.2014.06.005)
Currie E, Schulze A, Zechner R, Walther TC, Farese RV. Cellular fatty acid metabolism and cancer. Cell Metab. 2013;18:153–61. (PMID: 23791484374256910.1016/j.cmet.2013.05.017)
Amelio I, Cutruzzola F, Antonov A, Agostini M, Melino G. Serine and glycine metabolism in cancer. Trends Biochem Sci. 2014;39:191–8. (PMID: 24657017398998810.1016/j.tibs.2014.02.004)
Rivenzon-Segal D, Boldin-Adamsky S, Seger D, Seger R, Degani H. Glycolysis and glucose transporter 1 as markers of response to hormonal therapy in breast cancer. Int J Cancer. 2003;107:177–82. (PMID: 1294979110.1002/ijc.11387)
Mathupala SP, Rempel A, Pedersen PL. Aberrant glycolytic metabolism of cancer cells: a remarkable coordination of genetic, transcriptional, post-translational, and mutational events that lead to a critical role for type II hexokinase. J Bioenerg Biomembr. 1997;29:339–43. (PMID: 938709410.1023/A:1022494613613)
Rodriguez-Enriquez S, Marin-Hernandez A, Gallardo-Perez JC, Pacheco-Velazquez SC, Belmont-Diaz JA, Robledo-Cadena DX, Vargas-Navarro JL, Corona de la Pena NA, Saavedra E, Moreno-Sanchez R. Transcriptional regulation of energy metabolism in cancer cells. Cells. 2019. https://doi.org/10.3390/cells8101225 . (PMID: 10.3390/cells8101225316009936830338)
Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV. MYC, Metabolism, and cancer. Cancer Discov. 2015;5:1024–39. (PMID: 26382145459244110.1158/2159-8290.CD-15-0507)
Kim JW, Zeller KI, Wang Y, Jegga AG, Aronow BJ, O’Donnell KA, Dang CV. Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays. Mol Cell Biol. 2004;24:5923–36. (PMID: 1519914748087510.1128/MCB.24.13.5923-5936.2004)
Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, Dalla-Favera R, Dang CV. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci U S A. 1997;94:6658–63. (PMID: 91926212121410.1073/pnas.94.13.6658)
Osthus RC, Shim H, Kim S, Li Q, Reddy R, Mukherjee M, Xu Y, Wonsey D, Lee LA, Dang CV. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem. 2000;275:21797–800. (PMID: 1082381410.1074/jbc.C000023200)
Hu S, Balakrishnan A, Bok RA, Anderton B, Larson PE, Nelson SJ, Kurhanewicz J, Vigneron DB, Goga A. 13C-pyruvate imaging reveals alterations in glycolysis that precede c-Myc-induced tumor formation and regression. Cell Metab. 2011;14:131–42. (PMID: 2172351110.1016/j.cmet.2011.04.012)
Grandori C, Cowley SM, James LP, Eisenman RN. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol. 2000;16:653–99. (PMID: 1103125010.1146/annurev.cellbio.16.1.653)
Narlikar GJ, Sundaramoorthy R, Owen-Hughes T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell. 2013;154:490–503. (PMID: 23911317378132210.1016/j.cell.2013.07.011)
Zhang FL, Cao JL, Xie HY, Sun R, Yang LF, Shao ZM, Li DQ. Cancer-associated MORC2-mutant M276I regulates an hnRNPM-mediated CD44 splicing switch to promote invasion and metastasis in triple-negative breast cancer. Cancer Res. 2018;78:5780–92. (PMID: 3009356010.1158/0008-5472.CAN-17-1394)
Ding QS, Zhang L, Wang BC, Zeng Z, Zou XQ, Cao PB, Zhou GM, Tang M, Wu L, Wu LL, Yu HG, Guo Y, Zhou FX. Aberrant high expression level of MORC2 is a common character in multiple cancers. Hum Pathol. 2018;76:58–67. (PMID: 2955557610.1016/j.humpath.2018.03.011)
Pan Z, Ding Q, Guo Q, Guo Y, Wu L, Tang M, Yu H, Zhou F. MORC2, a novel oncogene, is upregulated in liver cancer and contributes to proliferation, metastasis and chemoresistance. Int J Oncol. 2018;53:59–72. (PMID: 296202115958890)
Liu J, Shao Y, He Y, Ning K, Cui X, Liu F, Wang Z, Li F. MORC2 promotes development of an aggressive colorectal cancer phenotype through inhibition of NDRG1. Cancer Sci. 2019;110:135–46. (PMID: 3040771510.1111/cas.13863)
Saroha HS, Kumar Guddeti R, Jacob JP, Kumar Pulukuri K, Karyala P. Pakala SB MORC2/β-catenin signaling axis promotes proliferation and migration of breast cancer cells. Med Oncol. 2022;39:135. (PMID: 3572735610.1007/s12032-022-01728-6)
Sanchez-Solana B, Li DQ, Kumar R. Cytosolic functions of MORC2 in lipogenesis and adipogenesis. Biochim Biophys Acta. 2014;1843:316–26. (PMID: 2428686410.1016/j.bbamcr.2013.11.012)
Su Y, Yu T, Wang Y, Huang X, Wei X. Circular RNA circDNM3OS functions as a miR-145-5p sponge to accelerate cholangiocarcinoma growth and glutamine metabolism by upregulating MORC2. Onco Targets Ther. 2021;14:1117–29. (PMID: 33628035789820910.2147/OTT.S289241)
Guddeti RK, Thomas L, Kannan A, Karyala P, Pakala SB. The chromatin modifier MORC2 affects glucose metabolism by regulating the expression of lactate dehydrogenase a through a feed forward loop with c-Myc. FEBS Lett. 2021;595:1289–302. (PMID: 3362617510.1002/1873-3468.14062)
Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C, Duesbury M, Dumousseau M, Feuermann M, Hinz U, Jandrasits C, Jimenez RC, Khadake J, Mahadevan U, Masson P, Pedruzzi I, Pfeiffenberger E, Porras P, Raghunath A, Roechert B, Orchard S, Hermjakob H. The IntAct molecular interaction database in 2012. Nucleic Acids Res. 2012;40:D841-846. (PMID: 2212122010.1093/nar/gkr1088)
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–13. (PMID: 3047624310.1093/nar/gky1131)
Franz M, Rodriguez H, Lopes C, Zuberi K, Montojo J, Bader GD, Morris Q. GeneMANIA update 2018. Nucleic Acids Res. 2018;46:W60–4. (PMID: 29912392603081510.1093/nar/gky311)
Oughtred R, Stark C, Breitkreutz BJ, Rust J, Boucher L, Chang C, Kolas N, O’Donnell L, Leung G, McAdam R, Zhang F, Dolma S, Willems A, Coulombe-Huntington J, Chatr-Aryamontri A, Dolinski K, Tyers M. The BioGRID interaction database: 2019 update. Nucleic Acids Res. 2019;47:D529–41. (PMID: 3047622710.1093/nar/gky1079)
Alanis-Lobato G, Andrade-Navarro MA, Schaefer MH. HIPPIE v2.0: enhancing meaningfulness and reliability of protein-protein interaction networks. Nucleic Acids Res. 2017;45:D408–14. (PMID: 2779455110.1093/nar/gkw985)
Ravichandran S, Banerjee U, Dr GD, Kandukuru R, Thakur C, Chakravortty D, Balaji KN, Singh A, Chandra N. VB(10), a new blood biomarker for differential diagnosis and recovery monitoring of acute viral and bacterial infections. EBioMedicine. 2021;67:103352. (PMID: 33906069809973910.1016/j.ebiom.2021.103352)
Su G, Morris JH, Demchak B, Bader GD. Biological network exploration with cytoscape 3. Curr Protoc Bioinformatics. 2014. https://doi.org/10.1002/0471250953.bi0813s47 . (PMID: 10.1002/0471250953.bi0813s47251997934174321)
Mudunuri U, Che A, Yi M, Stephens RM. bioDBnet: the biological database network. Bioinformatics. 2009;25:555–6. (PMID: 19129209264263810.1093/bioinformatics/btn654)
Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Feng Z, Gilliland GL, Iype L, Jain S, Fagan P, Marvin J, Padilla D, Ravichandran V, Schneider B, Thanki N, Weissig H, Westbrook JD, Zardecki C. The protein data bank. Acta Crystallogr D Biol Crystallogr. 2002;58:899–907. (PMID: 1203732710.1107/S0907444902003451)
Spassov VZ, Flook PK, Yan L. LOOPER: a molecular mechanics-based algorithm for protein loop prediction. Protein Eng Des Sel. 2008;21:91–100. (PMID: 1819498110.1093/protein/gzm083)
Yellapu NK, Pulaganti M, Pakala SB. Bioinformatics exploration of PAK1 (P21-activated kinase-1) revealed potential network gene elements in breast invasive carcinoma. J Biomol Struct Dyn. 2017;35:2269–79. (PMID: 2745603010.1080/07391102.2016.1216894)
Hooft RW, Sander C, Vriend G. Objectively judging the quality of a protein structure from a Ramachandran plot. Comput Appl Biosci. 1997;13:425–30. (PMID: 9283757)
Chen R, Li L, Weng Z. ZDOCK: an initial-stage protein-docking algorithm. Proteins. 2003;52:80–7. (PMID: 1278437110.1002/prot.10389)
Pierce B, Weng Z. ZRANK: reranking protein docking predictions with an optimized energy function. Proteins. 2007;67:1078–86. (PMID: 1737371010.1002/prot.21373)
Li L, Chen R, Weng Z. RDOCK: refinement of rigid-body protein docking predictions. Proteins. 2003;53:693–707. (PMID: 1457936010.1002/prot.10460)
Li X, Wang W, Wang J, Malovannaya A, Xi Y, Li W, Guerra R, Hawke DH, Qin J, Chen J. Proteomic analyses reveal distinct chromatin-associated and soluble transcription factor complexes. Mol Syst Biol. 2014;11:775. (PMID: 10.15252/msb.20145504)
Chutani N, Singh AK, Kadumuri RV, Pakala SB, Chavali S. Structural and functional attributes of microrchidia family of chromatin remodelers. J Mol Biol. 2022;434:167664. (PMID: 3565950610.1016/j.jmb.2022.167664)
Wang H, Zhang L, Luo Q, Liu J, Wang G. MORC protein family-related signature within human disease and cancer. Cell Death Dis. 2021;12:1112. (PMID: 34839357862750510.1038/s41419-021-04393-1)
Guddeti RK, Chutani N, Pakala SB. MORC2 interactome: its involvement in metabolism and cancer. Biophys Rev. 2021;13:507–14. (PMID: 34471435835528610.1007/s12551-021-00812-x)
Liu HY, Liu YY, Zhang YL, Ning Y, Zhang FL, Li DQ. Poly(ADP-ribosyl)ation of acetyltransferase NAT10 by PARP1 is required for its nucleoplasmic translocation and function in response to DNA damage. Cell Commun Signal. 2022;20:127. (PMID: 35986334938968810.1186/s12964-022-00932-1)
Liu YY, Liu HY, Yu TJ, Lu Q, Zhang FL, Liu GY, Shao ZM, Li DQ. O-GlcNAcylation of MORC2 at threonine 556 by OGT couples TGF-β signaling to breast cancer progression. Cell Death Differ. 2022;29:861–73. (PMID: 34974534899118610.1038/s41418-021-00901-0)
Zhang J, Yang Y, Dong Y, Liu C. Microrchidia family C-type zinc finger 2 promotes the proliferation, invasion, migration and epithelialâl-‘mesenchymal transition of glioma by regulating PTEN/PI3K/AKT signaling via binding to N-myc downstream regulated gene 1 promoter. Int J Mol Med. 2022. https://doi.org/10.3892/ijmm.2021.5071 . (PMID: 10.3892/ijmm.2021.5071365243789869724)
Xie HY, Zhang TM, Hu SY, Shao ZM, Li DQ. Dimerization of MORC2 through its C-terminal coiled-coil domain enhances chromatin dynamics and promotes DNA repair. Cell Commun Signal. 2019;17:160. (PMID: 31796101689215010.1186/s12964-019-0477-5)
Liao XH, Zhang Y, Dong WJ, Shao ZM, Li DQ. Chromatin remodeling protein MORC2 promotes breast cancer invasion and metastasis through a PRD domain-mediated interaction with CTNND1. Oncotarget. 2017;8:97941–54. (PMID: 29228664571670410.18632/oncotarget.18556)
Xintaropoulou C, Ward C, Wise A, Queckborner S, Turnbull A, Michie CO, Williams ARW, Rye T, Gourley C, Langdon SP. Expression of glycolytic enzymes in ovarian cancers and evaluation of the glycolytic pathway as a strategy for ovarian cancer treatment. BMC Cancer. 2018;18:636. (PMID: 29866066598762210.1186/s12885-018-4521-4)
Ganapathy-Kanniappan S, Geschwind JF. Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer. 2013;12:152. (PMID: 24298908422372910.1186/1476-4598-12-152)
Nowak N, Kulma A, Gutowicz J. Up-regulation of key glycolysis proteins in cancer development. Open Life Sci. 2018;13:569–81. (PMID: 33817128787469110.1515/biol-2018-0068)
Zhang Y, Li Q, Huang Z, Li B, Nice EC, Huang C, Wei L, Zou B. Targeting glucose metabolism enzymes in cancer treatment: current and emerging strategies. Cancers. 2022. https://doi.org/10.3390/cancers14194568 . (PMID: 10.3390/cancers14194568366122829818644)
فهرسة مساهمة: Keywords: Breast cancer; Glycolytic enzymes; MAX; MORC2; Proliferation and migration
المشرفين على المادة: IY9XDZ35W2 (Glucose)
0 (MORC2 protein, human)
0 (Transcription Factors)
0 (MAX protein, human)
تواريخ الأحداث: Date Created: 20230221 Date Completed: 20230223 Latest Revision: 20230223
رمز التحديث: 20231215
DOI: 10.1007/s12032-023-01974-2
PMID: 36802305
قاعدة البيانات: MEDLINE
الوصف
تدمد:1559-131X
DOI:10.1007/s12032-023-01974-2