دورية أكاديمية

Identification and validation of coding and non-coding RNAs involved in high-temperature-mediated seed dormancy in common wheat.

التفاصيل البيبلوغرافية
العنوان: Identification and validation of coding and non-coding RNAs involved in high-temperature-mediated seed dormancy in common wheat.
المؤلفون: Jiang H; Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, College of Agronomy, Anhui Agricultural University, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, China., Gao W; Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, College of Agronomy, Anhui Agricultural University, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, China., Jiang BL; Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, College of Agronomy, Anhui Agricultural University, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, China., Liu X; Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, College of Agronomy, Anhui Agricultural University, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, China., Jiang YT; Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, College of Agronomy, Anhui Agricultural University, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, China., Zhang LT; Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, College of Agronomy, Anhui Agricultural University, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, China., Zhang Y; Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, College of Agronomy, Anhui Agricultural University, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, China., Yan SN; Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, College of Agronomy, Anhui Agricultural University, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, China., Cao JJ; Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, College of Agronomy, Anhui Agricultural University, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, China., Lu J; Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, College of Agronomy, Anhui Agricultural University, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, China., Ma CX; Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, College of Agronomy, Anhui Agricultural University, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, China., Chang C; Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, College of Agronomy, Anhui Agricultural University, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, China., Zhang HP; Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, College of Agronomy, Anhui Agricultural University, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, China.
المصدر: Frontiers in plant science [Front Plant Sci] 2023 Feb 01; Vol. 14, pp. 1107277. Date of Electronic Publication: 2023 Feb 01 (Print Publication: 2023).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Frontiers Research Foundation Country of Publication: Switzerland NLM ID: 101568200 Publication Model: eCollection Cited Medium: Print ISSN: 1664-462X (Print) Linking ISSN: 1664462X NLM ISO Abbreviation: Front Plant Sci Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Lausanne : Frontiers Research Foundation, 2010-
مستخلص: Introduction: Seed dormancy (SD) significantly decreases under high temperature (HT) environment during seed maturation, resulting in pre-harvest sprouting (PHS) damage under prolonged rainfall and wet weather during wheat harvest. However, the molecular mechanism underlying HT-mediated SD remains elusiveSeed dormancy (SD) significantly decreases under high temperature (HT) environment during seed maturation, resulting in pre-harvest sprouting (PHS) damage under prolonged rainfall and wet weather during wheat harvest. However, the molecular mechanism underlying HT-mediated SD remains elusive.
Methods: Here, the wheat landrace 'Waitoubai' with strong SD and PHS resistance was treated with HT from 21 to 35 days post anthesis (DPA). Then, the seeds under HT and normal temperature (NT) environments were collected at 21 DPA, 28 DPA, and 35 DPA and subjected to whole-transcriptome sequencing.
Results: The phenotypic data showed that the seed germination percentage significantly increased, whereas SD decreased after HT treatment compared with NT, consistent with the results of previous studies. In total, 5128 mRNAs, 136 microRNAs (miRNAs), 273 long non-coding RNAs (lncRNAs), and 21 circularRNAs were found to be responsive to HT, and some of them were further verified through qRT-PCR. In particular, the known gibberellin (GA) biosynthesis gene TaGA20ox1 ( TraesCS3D02G393900 ) was proved to be involved in HT-mediated dormancy by using the EMS-mutagenized wheat cultivar Jimai 22. Similarly, a novel gene TaCDPK21 ( TraesCS7A02G267000 ) involved in the calcium signaling pathway was validated to be associated with HT-mediated dormancy by using the EMS mutant. Moreover, TaCDPK21 overexpression in Arabidopsis and functional complementarity tests supported the negative role of TaCDPK21 in SD. We also constructed a co-expression regulatory network based on differentially expressed mRNAs, miRNAs, and lncRNAs and found that a novel miR27319 was located at a key node of this regulatory network. Subsequently, using Arabidopsis and rice lines overexpressing miR27319 precursor or lacking miR27319 expression, we validated the positive role of miR27319 in SD and further preliminarily dissected the molecular mechanism of miR27319 underlying SD regulation through phytohormone abscisic acid and GA biosynthesis, catabolism, and signaling pathways.
Discussion: These findings not only broaden our understanding of the complex regulatory network of HT-mediated dormancy but also provide new gene resources for improving wheat PHS resistance to minimize PHS damage by using the molecular pyramiding approach.
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
(Copyright © 2023 Jiang, Gao, Jiang, Liu, Jiang, Zhang, Zhang, Yan, Cao, Lu, Ma, Chang and Zhang.)
References: Plant Mol Biol. 1996 Sep;31(6):1205-16. (PMID: 8914536)
Planta. 2010 Nov;232(6):1447-54. (PMID: 20839006)
Plant J. 2020 Feb;101(3):700-715. (PMID: 31628689)
Curr Opin Plant Biol. 2003 Oct;6(5):470-9. (PMID: 12972048)
Nucleic Acids Res. 2013 Sep;41(17):e166. (PMID: 23892401)
Nat Methods. 2015 Apr;12(4):357-60. (PMID: 25751142)
Bioinformatics. 2013 Nov 15;29(22):2933-5. (PMID: 24008419)
Plant Cell. 2007 Oct;19(10):3019-36. (PMID: 17921317)
Nucleic Acids Res. 2019 Jan 8;47(D1):D155-D162. (PMID: 30423142)
Plant J. 2020 Jan;101(2):310-323. (PMID: 31536657)
Annu Rev Plant Biol. 2012;63:507-33. (PMID: 22136565)
J Cell Biochem. 2011 May;112(5):1318-28. (PMID: 21312241)
Antioxid Redox Signal. 2011 Aug 15;15(4):1129-59. (PMID: 21194355)
Plant J. 1998 Dec;16(6):735-43. (PMID: 10069079)
BMC Plant Biol. 2015 Jan 27;15:21. (PMID: 25623724)
Mol Ecol. 2011 Aug;20(16):3336-49. (PMID: 21740475)
J Exp Bot. 2015 Apr;66(7):1749-61. (PMID: 25697792)
Plant J. 2007 Feb;49(4):592-606. (PMID: 17217461)
Nat Protoc. 2012 Mar 01;7(3):562-78. (PMID: 22383036)
J Exp Bot. 2010 May;61(9):2229-34. (PMID: 20335408)
Bioinformatics. 2009 Aug 1;25(15):1966-7. (PMID: 19497933)
Plant Cell. 1997 Jul;9(7):1055-1066. (PMID: 12237375)
Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):17042-7. (PMID: 17065317)
Plant Cell. 2011 Jul;23(7):2568-80. (PMID: 21803937)
Mol Plant. 2020 Aug 3;13(8):1194-1202. (PMID: 32585190)
Plant Mol Biol. 1998 Apr;36(6):833-45. (PMID: 9580097)
J Plant Physiol. 2008 Dec;165(18):1889-94. (PMID: 18538892)
Plant J. 2007 Oct;52(1):133-46. (PMID: 17672844)
Plant J. 1994 Aug;6(2):271-82. (PMID: 7920717)
Theor Appl Genet. 2008 Sep;117(5):691-9. (PMID: 18542909)
Theor Appl Genet. 2007 Nov;115(7):971-80. (PMID: 17712543)
Mol Biol Evol. 2015 Jul;32(7):1767-73. (PMID: 25750178)
Plant Mol Biol. 1992 Jun;19(3):433-41. (PMID: 1377965)
Plant Cell Physiol. 2019 Feb 1;60(2):421-435. (PMID: 30462304)
Mol Plant. 2016 Feb 1;9(2):192-194. (PMID: 26774621)
Plant Sci. 2019 Apr;281:180-185. (PMID: 30824050)
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W155-9. (PMID: 21622958)
Transgenic Res. 2014 Aug;23(4):621-9. (PMID: 24752830)
Front Genet. 2021 Sep 14;12:741858. (PMID: 34594365)
Planta. 2004 Jul;219(3):479-88. (PMID: 15060827)
Theor Appl Genet. 2017 Jan;130(1):81-89. (PMID: 27650191)
Nature. 2013 Mar 21;495(7441):333-8. (PMID: 23446348)
Nat Methods. 2012 Mar 04;9(4):357-9. (PMID: 22388286)
J Exp Bot. 2004 Jan;55(395):181-8. (PMID: 14623901)
Bioinformatics. 2010 Jan 1;26(1):136-8. (PMID: 19855105)
New Phytol. 2011 Oct;192(1):61-73. (PMID: 21692804)
J Exp Bot. 2021 Apr 2;72(8):2857-2876. (PMID: 33471899)
Genetics. 2013 Sep;195(1):263-73. (PMID: 23821595)
Nat Commun. 2019 Aug 23;10(1):3822. (PMID: 31444356)
BMC Genomics. 2016 Mar 15;17:238. (PMID: 26980266)
Nucleic Acids Res. 2021 Jan 8;49(D1):D412-D419. (PMID: 33125078)
Plant Cell. 2018 Apr;30(4):796-814. (PMID: 29567662)
Methods. 2001 Dec;25(4):402-8. (PMID: 11846609)
Plant Physiol. 2005 Dec;139(4):1750-61. (PMID: 16299177)
Nucleic Acids Res. 2000 Jan 1;28(1):27-30. (PMID: 10592173)
Theor Appl Genet. 2014 Apr;127(4):855-66. (PMID: 24452439)
Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):E2199-206. (PMID: 27035986)
Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):E3571-80. (PMID: 25114251)
Nucleic Acids Res. 2017 Jul 3;45(W1):W12-W16. (PMID: 28521017)
Plant Cell. 2021 Jul 2;33(5):1506-1529. (PMID: 33616669)
Nucleic Acids Res. 2013 Apr 1;41(6):e74. (PMID: 23335781)
New Phytol. 2021 Jun;230(5):1940-1952. (PMID: 33651378)
J Agric Food Chem. 2021 Apr 7;69(13):4018-4035. (PMID: 33769818)
Plant Sci. 2020 Apr;293:110435. (PMID: 32081273)
Curr Biol. 2016 Mar 21;26(6):782-7. (PMID: 26948878)
Planta. 2019 Jul;250(1):187-198. (PMID: 30972483)
Plant Cell. 2011 Sep;23(9):3215-29. (PMID: 21896881)
Plant J. 2016 Nov;88(4):608-619. (PMID: 27464651)
J Exp Bot. 2020 Jan 23;71(3):919-933. (PMID: 31641755)
فهرسة مساهمة: Keywords: high-temperature; pre-harvest sprouting; seed dormancy; transcriptome sequencing; wheat
تواريخ الأحداث: Date Created: 20230223 Latest Revision: 20230224
رمز التحديث: 20230224
مُعرف محوري في PubMed: PMC9929302
DOI: 10.3389/fpls.2023.1107277
PMID: 36818881
قاعدة البيانات: MEDLINE
الوصف
تدمد:1664-462X
DOI:10.3389/fpls.2023.1107277