دورية أكاديمية

P-selectin-targeted nanocarriers induce active crossing of the blood-brain barrier via caveolin-1-dependent transcytosis.

التفاصيل البيبلوغرافية
العنوان: P-selectin-targeted nanocarriers induce active crossing of the blood-brain barrier via caveolin-1-dependent transcytosis.
المؤلفون: Tylawsky DE; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA., Kiguchi H; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Vaynshteyn J; Departments of Neurology and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA., Gerwin J; Departments of Neurology and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA., Shah J; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Islam T; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Boyer JA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Boué DR; Departments of Pathology & Laboratory Medicine, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA., Snuderl M; Division of Neuropathology, Department of Pathology, NYU Langone Medical Center, New York, NY, USA., Greenblatt MB; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, & Research Division, Hospital for Special Surgery, New York, NY, USA., Shamay Y; Faculty of Biomedical Engineering, Technion Israel Institute of Technology, Haifa, Israel., Raju GP; Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA. praveen.raju@mssm.edu.; Departments of Neurology and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA. praveen.raju@mssm.edu.; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA. praveen.raju@mssm.edu., Heller DA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. hellerd@mskcc.org.; Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA. hellerd@mskcc.org.
المصدر: Nature materials [Nat Mater] 2023 Mar; Vol. 22 (3), pp. 391-399. Date of Electronic Publication: 2023 Mar 02.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101155473 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4660 (Electronic) Linking ISSN: 14761122 NLM ISO Abbreviation: Nat Mater Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London, UK : Nature Pub. Group, [2002]-
مواضيع طبية MeSH: Medulloblastoma* , Cerebellar Neoplasms*, Animals ; Hedgehog Proteins ; Blood-Brain Barrier ; Caveolin 1 ; P-Selectin ; Transcytosis ; Tumor Microenvironment
مستخلص: Medulloblastoma is the most common malignant paediatric brain tumour, with ~30% mediated by Sonic hedgehog signalling. Vismodegib-mediated inhibition of the Sonic hedgehog effector Smoothened inhibits tumour growth but causes growth plate fusion at effective doses. Here, we report a nanotherapeutic approach targeting endothelial tumour vasculature to enhance blood-brain barrier crossing. We use fucoidan-based nanocarriers targeting endothelial P-selectin to induce caveolin-1-dependent transcytosis and thus nanocarrier transport into the brain tumour microenvironment in a selective and active manner, the efficiency of which is increased by radiation treatment. In a Sonic hedgehog medulloblastoma animal model, fucoidan-based nanoparticles encapsulating vismodegib exhibit a striking efficacy and marked reduced bone toxicity and drug exposure to healthy brain tissue. Overall, these findings demonstrate a potent strategy for targeted intracranial pharmacodelivery that overcomes the restrictive blood-brain barrier to achieve enhanced tumour-selective penetration and has therapeutic implications for diseases within the central nervous system.
(© 2023. The Author(s).)
التعليقات: Comment in: Nat Mater. 2023 Mar;22(3):282-283. (PMID: 36864160)
References: Wong, A. D. et al. The blood-brain barrier: an engineering perspective. Front. Neuroeng. 6, 7 (2013). (PMID: 10.3389/fneng.2013.00007)
Griffith, J. I. et al. Addressing BBB heterogeneity: a new paradigm for drug delivery to brain tumors. Pharmaceutics 12, 1205 (2020). (PMID: 10.3390/pharmaceutics12121205)
Goldsmith, M., Abramovitz, L. & Peer, D. Precision nanomedicine in neurodegenerative diseases. ACS Nano 8, 1958–1965 (2014). (PMID: 10.1021/nn501292z)
Kool, M. et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol. 123, 473–484 (2012). (PMID: 10.1007/s00401-012-0958-8)
Ramaswamy, V. et al. Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathol. 131, 821–831 (2016). (PMID: 10.1007/s00401-016-1569-6)
Phoenix, T. N. et al. Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell 29, 508–522 (2016). (PMID: 10.1016/j.ccell.2016.03.002)
Gajjar, A. et al. Phase I study of vismodegib in children with recurrent or refractory medulloblastoma: a pediatric brain tumor consortium study. Clin. Cancer Res. 19, 6305–6312 (2013). (PMID: 10.1158/1078-0432.CCR-13-1425)
Robinson, G. W. et al. Irreversible growth plate fusions in children with medulloblastoma treated with a targeted hedgehog pathway inhibitor. Oncotarget 8, 69295–69302 (2017). (PMID: 10.18632/oncotarget.20619)
De Rosa, G., Salzano, G., Caraglia, M. & Abbruzzese, A. Nanotechnologies: a strategy to overcome blood-brain barrier. Curr. Drug Metab. 13, 61–69 (2012). (PMID: 10.2174/138920012798356943)
Ferber, S. et al. Co-targeting the tumor endothelium and P-selectin-expressing glioblastoma cells leads to a remarkable therapeutic outcome. eLife 6, e25281 (2017). (PMID: 10.7554/eLife.25281)
Song, K. H., Harvey, B. K. & Borden, M. A. State-of-the-art of microbubble-assisted blood-brain barrier disruption. Theranostics 8, 4393–4408 (2018). (PMID: 10.7150/thno.26869)
Zhang, C. et al. Photodynamic opening of the blood-brain barrier to high weight molecules and liposomes through an optical clearing skull window. Biomed. Opt. Express 9, 4850–4862 (2018). (PMID: 10.1364/BOE.9.004850)
Aryal, M., Arvanitis, C. D., Alexander, P. M. & McDannold, N. Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system. Adv. Drug Deliv. Rev. 72, 94–109 (2014). (PMID: 10.1016/j.addr.2014.01.008)
Hwang, D. et al. Poly(2-oxazoline) nanoparticle delivery enhances the therapeutic potential of vismodegib for medulloblastoma by improving CNS pharmacokinetics and reducing systemic toxicity. Nanomed. Nanotechnol. Biol. Med. 32, 102345 (2021). (PMID: 10.1016/j.nano.2020.102345)
Sindhwani, S. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 19, 566–575 (2020). (PMID: 10.1038/s41563-019-0566-2)
Shamay, Y. et al. P-selectin is a nanotherapeutic delivery target in the tumor microenvironment. Sci. Transl. Med. 8, 345ra87 (2016). (PMID: 10.1126/scitranslmed.aaf7374)
Mizrachi, A. et al. Tumour-specific PI3K inhibition via nanoparticle-targeted delivery in head and neck squamous cell carcinoma. Nat. Commun. 8, 14292 (2017). (PMID: 10.1038/ncomms14292)
Hallahan, D. E. & Virudachalam, S. Accumulation of P-selectin in the lumen of irradiated blood vessels. Radiat. Res. 152, 6–13 (1999). (PMID: 10.2307/3580044)
Bachelet, L. et al. Affinity of low molecular weight fucoidan for P-selectin triggers its binding to activated human platelets. Biochim. Biophys. Acta 1790, 141–146 (2009). (PMID: 10.1016/j.bbagen.2008.10.008)
Voigt, J., Christensen, J. & Shastri, V. P. Differential uptake of nanoparticles by endothelial cells through polyelectrolytes with affinity for caveolae. Proc. Natl Acad. Sci. USA 111, 2942–2947 (2014). (PMID: 10.1073/pnas.1322356111)
Wong, H. et al. Pharmacokinetic-pharmacodynamic analysis of vismodegib in preclinical models of mutational and ligand-dependent Hedgehog pathway activation. Clin. Cancer Res. 17, 4682–4692 (2011). (PMID: 10.1158/1078-0432.CCR-11-0975)
Kimura, H., Ng, J. M. & Curran, T. Transient inhibition of the Hedgehog pathway in young mice causes permanent defects in bone structure. Cancer Cell 13, 249–260 (2008). (PMID: 10.1016/j.ccr.2008.01.027)
Brechbiel, J. L., Ng, J. M. & Curran, T. PTHrP treatment fails to rescue bone defects caused by Hedgehog pathway inhibition in young mice. Toxicol. Pathol. 39, 478–485 (2011). (PMID: 10.1177/0192623311399788)
Mylvaganam, S. et al. Stabilization of endothelial receptor arrays by a polarized spectrin cytoskeleton facilitates rolling and adhesion of leukocytes. Cell Rep. 31, 107798 (2020). (PMID: 10.1016/j.celrep.2020.107798)
Xu, T. et al. P-selectin cross-links PSGL-1 and enhances neutrophil adhesion to fibrinogen and ICAM-1 in a Src kinase-dependent, but GPCR-independent mechanism. Cell Adh. Migr. 1, 115–123 (2007). (PMID: 10.4161/cam.1.3.4984)
Cho, M. H., Li, Y., Lo, P.-C., Lee, H. & Choi, Y. Fucoidan-based theranostic nanogel for enhancing imaging and photodynamic therapy of cancer. Nanomicro Lett. 12, 47 (2020).
Battistini, L. et al. CD8 + T cells from patients with acute multiple sclerosis display selective increase of adhesiveness in brain venules: a critical role for P-selectin glycoprotein ligand-1. Blood 101, 4775–4782 (2003). (PMID: 10.1182/blood-2002-10-3309)
Piccio, L. et al. Molecular mechanisms involved in lymphocyte recruitment in inflamed brain microvessels: critical roles for P-selectin glycoprotein ligand-1 and heterotrimeric G i -linked receptors. J. Immunol. 168, 1940–1949 (2002). (PMID: 10.4049/jimmunol.168.4.1940)
Zhang, R., Chopp, M., Zhang, Z., Jiang, N. & Powers, C. The expression of P- and E-selectins in three models of middle cerebral artery occlusion. Brain Res. 785, 207–214 (1998). (PMID: 10.1016/S0006-8993(97)01343-7)
Fabene, P. F. et al. A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat. Med. 14, 1377–1383 (2008). (PMID: 10.1038/nm.1878)
Hoshino, M. et al. Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron 47, 201–213 (2005). (PMID: 10.1016/j.neuron.2005.06.007)
Ellis, T. et al. Patched 1 conditional null allele in mice. Genesis 36, 158–161 (2003). (PMID: 10.1002/gene.10208)
Razani, B. et al. Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J. Biol. Chem. 276, 38121–38138 (2001). (PMID: 10.1074/jbc.M105408200)
Mayadas, T. N., Johnson, R. C., Rayburn, H., Hynes, R. O. & Wagner, D. D. Leukocyte rolling and extravasation are severely compromised in P-selectin-deficient mice. Cell 74, 541–554 (1993). (PMID: 10.1016/0092-8674(93)80055-J)
Capper, D. et al. DNA methylation-based classification of central nervous system tumours. Nature 555, 469–474 (2018). (PMID: 10.1038/nature26000)
Zou, W. et al. MLK3 regulates bone development downstream of the faciogenital dysplasia protein FGD1 in mice. J. Clin. Invest. 121, 4383–4392 (2011). (PMID: 10.1172/JCI59041)
Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017). (PMID: 10.1038/s41598-017-17204-5)
Adapted from ‘Blood Brain Barrier (simple longitudinal)’. BioRender. Accessed 21 January 2023; https://app.biorender.com/biorender-templates.
معلومات مُعتمدة: T32 CA062948 United States CA NCI NIH HHS; P30 CA008748 United States CA NCI NIH HHS; R01 NS116353 United States NS NINDS NIH HHS; R01 CA215719 United States CA NCI NIH HHS; R01 NS122987 United States NS NINDS NIH HHS
المشرفين على المادة: 0 (Hedgehog Proteins)
0 (HhAntag691)
0 (Caveolin 1)
0 (P-Selectin)
تواريخ الأحداث: Date Created: 20230302 Date Completed: 20230306 Latest Revision: 20231116
رمز التحديث: 20240829
مُعرف محوري في PubMed: PMC9981459
DOI: 10.1038/s41563-023-01481-9
PMID: 36864161
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4660
DOI:10.1038/s41563-023-01481-9