دورية أكاديمية

Green Sea Turtles (Chelonia mydas) Accumulate Heavy Metals Near a Former Skeet Shooting Range in Kailua, O'ahu, Hawai'i.

التفاصيل البيبلوغرافية
العنوان: Green Sea Turtles (Chelonia mydas) Accumulate Heavy Metals Near a Former Skeet Shooting Range in Kailua, O'ahu, Hawai'i.
المؤلفون: Shaw KR; Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, USA., Balazs GH; Golden Honu Services of Oceania, Honolulu, Hawaii, USA., Jones TT; Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration, Honolulu, Hawaii, USA., Lynch HW; Makanakai Marine Services, Honolulu, Hawaii, USA., Liu J; Environment Research Institute, Shandong University, Qingdao, China., Cobb GP; Department of Environmental Sciences, Baylor University, Waco, Texas, USA., Klein DM; Department of Civil Engineering, Texas Tech University, Lubbock, Texas, USA., Lynch JM; Chemical Sciences Division, National Institute of Standards and Technology, Waimānalo, Hawaii, USA.; Center for Marine Debris Research, Hawai'i Pacific University, Waimānalo, Hawaii, USA.
المصدر: Environmental toxicology and chemistry [Environ Toxicol Chem] 2023 May; Vol. 42 (5), pp. 1109-1123. Date of Electronic Publication: 2023 Apr 07.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: SETAC Press Country of Publication: United States NLM ID: 8308958 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1552-8618 (Electronic) Linking ISSN: 07307268 NLM ISO Abbreviation: Environ Toxicol Chem Subsets: MEDLINE
أسماء مطبوعة: Publication: Pensacola, FL : SETAC Press
Original Publication: New York : Pergamon Press, c1982-
مواضيع طبية MeSH: Turtles* , Water Pollutants, Chemical*/analysis , Metals, Heavy*/analysis , Arsenic*/analysis, Animals ; Hawaii ; Lead/analysis
مستخلص: The present study determined if green sea turtles (Chelonia mydas) in Kailua Bay, Oahu, in the Hawaiian Islands have elevated blood and scute lead (Pb), arsenic (As), and antimony (Sb) concentrations resulting from lead deposition at a historic skeet shooting range. Blood and scute samples were collected and analyzed for Pb, As, and Sb via inductively coupled plasma-mass spectrometry. Prey, water, and sediment samples were also analyzed. Turtle samples in Kailua Bay (45) have blood Pb concentrations (328 ± 195 ng/g) greater than a reference population (Howick Group of Islands, 29.2 ± 17.1 ng/g). Compared with other green turtle populations, only turtles in Oman, Brazil, and San Diego, CA have blood Pb concentrations greater than turtles in Kailua Bay. The estimated daily exposure of Pb from algae sources in Kailua Bay (0.12 mg/kg/day) was significantly lower than the no observed adverse effect level (100 mg/kg) of red-eared slider turtles. However, the chronic effects of Pb on sea turtles is poorly understood and continued monitoring of this population will increase our understanding of the Pb and As loads of sea turtles in Kailua Bay. Environ Toxicol Chem 2023;42:1109-1123. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
(© 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.)
References: Agency for Toxic Substances and Disease Registry. (2020). Toxicological profile for Lead. US Department of Health and Human Services, Public Health Service.
Aguiar, E. (2009). Hawaii to clean old lead pellets from parts of Kaimalino Beach. Honolulu Advertiser. http://the.honoluluadvertiser.com/article/2009/Feb/14/ln/hawaii902140327.html.
Al-Abdali, F., Massoud, M. S., & Al-Ghadban, A. N. (1996). Bottom sediments of the Arabian Gulf- III. Trace metal contents as indicators of pollution and implications for the effect and fate of the Kuwait oil slick. Environmental Pollution, 93(3), 285-301.
Andreae, M. O. (1980). Arsenic in rain and the atmospheric mass balance of arsenic. Journal of Geophysical Research, 85(C8).
Arthur, K. E., & Balazs, G. H. (2008). A comparison of immature green turtle (Chelonia mydas) diets among seven sites in the main Hawaiian Islands. Pacific Science, 62(2), 205-217. https://doi.org/10.2984/1534-6188(2008)62[205:Acoigt]2.0.Co;2.
Asuncion, B. F. (2010). Characterizing juvenile green sea turtles (Chelonia mydas) habitat use in Kawainui, O'ahu: A multi-disciplinary approach [Master's thesis, Hawaii Pacific University].
Balazs, G. H., & Chaloupka, M. (2004). Spatial and temporal variability in somatic growth of green sea turtles (Chelonia mydas) resident in the Hawaiian Archipelago. Marine Biology, 145(5), 1043-1059. https://doi.org/10.1007/s00227-004-1387-6.
Bezerra, M. F., Lacerda, L. D., Lima, E. H., & Melo, M. T. (2013). Monitoring mercury in green sea turtles using keratinized carapace fragments (scutes). Marine Pollution Bulletin, 77(1-2), 424-427. https://doi.org/10.1016/j.marpolbul.2013.09.020.
Board of Land of Natural Resources. (2012, August 24). Minutes for the meeting of the Board of Land and Natural Resources. https://dlnr.hawaii.gov/meetings/blnr-meetings-2012/.
Bruno, D. dA., Willmer, I. Q., Pereira, L. H. S. dS., Rocha, R. C. C., Saint'Pierre, T. D., Baldassin, P., Scarelli, A. C. S., Tadeu, A. D., Correia, F. V., Saggioro, E. M., Lemos, L. S., Siciliano, S., & Hauser-Davis, R. A. (2021). Metal and metalloid contamination in green sea turtles (Chelonia mydas) found stranded in Southeastern Brazil. Frontiers in Marine Science, 8, 608253. https://doi.org/10.3389/fmars.2021.608253.
Bryan, J. M. (2013). Concentrations of heavy metals in scute samples from nesting female olive ridley, Lepidochelys olivacea, and Eastern Pacific green, Chelonia mydas agassizii, sea turtles in Costa Rica [Master's thesis, Purdue University].
Burger, J. (2008). Assessment and management of risk to wildlife from cadmium. Science of the Total Environment, 389(1), 37-45. https://doi.org/10.1016/j.scitotenv.2007.08.037.
Burger, J., Carruth-Hinchey, C., Ondroff, J., McMahon, M., Gibbons, J. W., & Gochfeld, M. (1998). Effects of lead on behavior, growth, and survival of hatchling slider turtles. Journal of Toxicology and Environmental Health. Part A, 55(7), 495-502. https://doi.org/10.1080/009841098158296.
Camacho, M., Boada, L. D., Oros, J., Lopez, P., Zumbado, M., Almeida-Gonzalez, M., & Luzardo, O. P. (2014). Monitoring organic and inorganic pollutants in juvenile live sea turtles: Results from a study of Chelonia mydas and Eretmochelys imbricata in Cape Verde. Science of the Total Environment, 481, 303-310. https://doi.org/10.1016/j.scitotenv.2014.02.051.
Cao, X., Ma, L. Q., Chen, M., Hardison, D. W., Jr., & Harris, W. G. (2003). Weathering of lead bullets and their environmental effects at outdoor shooting ranges. Journal of Environmental Quality, 32(2), 526-534.
Cortes-Gomez, A. A., Romero, D., & Girondot, M. (2017). The current situation of inorganic elements in marine turtles: A general review and meta-analysis. Environmental Pollution, 229, 567-585. https://doi.org/10.1016/j.envpol.2017.06.077.
Creed, J. T., Brockhoff, C. A., & Martin, T. D. (1994). Determination of trace elements in water and waste by Inductively Coupled Plasma-Mass Spectrometry, Method 200.8, Revision 5.4.
Custer, T. W., Franson, J. C., & Pattee, O. H. (1984). Tissue lead distribution and hematologic effects in American kestrels (Falco sparverius L.) fed biologically incorporated lead. Journal of Wildlife Diseases, 20(1), 39-43. https://doi.org/10.7589/0090-3558-20.1.39.
da Silva, C. C., Klein, R. D., Barcarolli, I. F., & Bianchini, A. (2016). Metal contamination as a possible etiology of fibropapillomatosis in juvenile female green sea turtles Chelonia mydas from the southern Atlantic Ocean. Aquatic Toxicology, 170, 42-51. https://doi.org/10.1016/j.aquatox.2015.11.007.
Day, R. D., Christopher, S. J., Becker, P. R., & Whitaker, D. W. (2005). Monitoring mercury in the loggerhead sea turtle, Caretta caretta. Environmental Science and Technology, 39(2), 437-446. https://doi.org/10.1021/es049628q.
Ehsanpour, M., Afkhami, M., Khoshnood, R., & Reich, K. J. (2014). Determination and maternal transfer of heavy metals (Cd, Cu, Zn, Pb and Hg) in the Hawksbill sea turtle (Eretmochelys imbricata) from a nesting colony of Qeshm Island, Iran. Bulletin of Environmental Contamination and Toxicology, 92(6), 667-673. https://doi.org/10.1007/s00128-014-1244-3.
Escobedo Mondragon, M., Perez Luzardo, O., Henriquez-Hernandez, L. A., Rodriguez-Hernandez, A., Zumbado, M., Rosiles Martinez, J. R., Gonzalez Farias, F., Suzan, G., & Gonzalez-Rebeles Islas, C. (2023). Trophic behavior of inorganic elements in nesting sea turtles (Chelonia mydas, Eretmochelys imbricata, and Caretta caretta) in Quintana Roo: Biomagnification and biodilution effect in blood and scute tissues. Marine Pollution Bulletin, 187, 114582.
Finlayson, K. A., Leusch, F. D. L., Villa, C. A., Limpus, C. J., & van de Merwe, J. P. (2021). Combining analytical and in vitro techniques for comprehensive assessments of chemical exposure and effect in green sea turtles (Chelonia mydas). Chemosphere, 274, 129752. https://doi.org/10.1016/j.chemosphere.2021.129752.
Francke, D. L., Hargrove, S. A., Vetter, E. W., Winn, C. D., Balazs, G. H., & Hyrenbach, K. D. (2013). Behavior of juvenile green turtles in a coastal neritic habitat: Validating time-depth-temperature records using visual observations. Journal of Experimental Marine Biology and Ecology, 444, 55-65. https://doi.org/10.1016/j.jembe.2013.03.011.
Franson, J. C., Sileo, L., Pattee, O. H., & Moore, J. F. (1983). Effects of chronic dietary lead in American kestrels (Falco sparverius). Journal of Wildlife Diseases, 19(2), 110-113. https://doi.org/10.7589/0090-3558-19.2.110.
French, A. D., Ashbaugh, H. M., Steinmetz, G., Barnes, M., Conway, W. C., & Klein, D. M. (2017). The S.M.A.R.T. (small mass, affordable, rapid, transfer-less) digestion method for heavy metal determinations. International Journal Environmental Analytical Chemistry, 97(6), 499-507. https://doi.org/10.1080/03067319.2017.1328060.
Gaus, C., Grant, S., Jin, N. L., Goot, K., Chen, L., Villa, A., Neugebauer, F., Qi, L., & Limpus, C. (2012). Investigation of contaminant levels in green turtles from Gladstone. National Research Center for Environmental Toxicology.
Helsel, D. (2005). Nondetects and data analysis: Statistics for censored environmental data. John Wiley & Sons.
Innis, C., Tlusty, M., Perkins, C., Holladay, S., Merigo, C., & Weber, E. S. (2008). Trace metal and organochlorine pesticide concentrations in cold-stunned juvenile Kemp's Ridley turtles (Lepidochelys kempii) from Cape Cod, Massachusetts. Chelonian Conservation and Biology, 7(2), 230-239. https://doi.org/10.2744/ccb-0707.1.
Jorgensen, S. S., & Willems, M. (1987). The fate of lead in soils: The transformation of lead pellets in shooting-range soils. Ambio, 16(1), 11-15.
Keller, J. M., Kucklick, J. R., Stamper, M. A., Harms, C. A., & McClellan-Green, P. D. (2004). Associations between organochlorine contaminant concentrations and clinical health parameters in loggerhead sea turtles from North Carolina, USA. Environmental Health Perspectives, 112(10), 1074-1079. https://doi.org/10.1289/ehp.6923.
Keller, J. M., Pugh, R. S., & Becker, P. R. (2014). Biological and Environmental Monitoring and Archival of Sea Turtle Tissues (BEMAST): Rationale,c protocols, and initial ollections of banked sea turtle tissues.
Komoroske, L. M., Lewison, R. L., Seminoff, J. A., Deheyn, D. D., & Dutton, P. H. (2011). Pollutants and the health of green sea turtles resident to an urbanized estuary in San Diego, CA. Chemosphere, 84(5), 544-552. https://doi.org/10.1016/j.chemosphere.2011.04.023.
Lam, J. C., Tanabe, S., Chan, S. K., Lam, M. H., Martin, M., & Lam, P. K. (2006). Levels of trace elements in green turtle eggs collected from Hong Kong: Evidence of risks due to selenium and nickel. Environmental Pollution, 144(3), 790-801. https://doi.org/10.1016/j.envpol.2006.02.016.
Maier, P. P., Segars, A. L., Arendt, M. D., Whitaker, J. D., Stender, B. W., Parker, L., Vendetti, R., Owens, B. W., Quattro, J., & Murphy, S. R. (2004). Development of an index of sea turtle abundance based upon in water sampling with trawl gear. South Carolina Department of Natural Resources, Office of Fisheries and Management. https://dc.statelibrary.sc.gov/bitstream/handle/10827/11189/DNR_Development_of_an_Index_of_Sea_Turtle_2004-3-31.pdf?sequence=1&isAllowed=y.
Manninen, S., & Tanskanen, N. (1993). Transfer of lead from shotgun pellets to humus and three plant species in a Finnish shooting range. Archives of Environmental Contamination and Toxicology, 24(3), 410-414.
Martinez-Lopez, E., Sousa, A. R., Maria-Mojica, P., Gomez-Ramirez, P., Guilhermino, L., & Garcia-Fernandez, A. J. (2010). Blood delta-ALAD, lead and cadmium concentrations in spur-thighed tortoises (Testudo graeca) from Southeastern Spain and Northern Africa. Ecotoxicology, 19(4), 670-677. https://doi.org/10.1007/s10646-009-0441-z.
McFadden, K. W., Gomez, A., Sterling, E. J., & Naro-Maciel, E. (2014). Potential impacts of historical disturbance on green turtle health in the unique & protected marine ecosystem of Palmyra Atoll (Central Pacific). Marine Pollution Bulletin, 89(1-2), 160-167. https://doi.org/10.1016/j.marpolbul.2014.10.012.
Miguel, C., Costa, P. G., Bianchini, A., Luzardo, O. L. P., Vianna, M. R. M., & Santos, M. R. D. (2022). Health condition of Chelonia mydas from a foraging area affected by the tailings of a collapsed dam in southeast Brazil. Science of the Total Environment, 821, 153353. https://doi.org/10.1016/j.scitotenv.2022.153353.
Monastra, V., Derry, L. A, & Chadwick, O. A. (2004). Multiple sources of lead in soils from a Hawaiian chronosequence. Chemical Geology, 209(3-4), 215-231. https://doi.org/10.1016/j.chemgeo.2004.04.027.
Paez-Osuna, F., Calderon-Campuzano, M. F., Soto-Jimenez, M. F., & Ruelas-Inzunza, J. R. (2010). Lead in blood and eggs of the sea turtle, Lepidochelys olivacea, from the Eastern Pacific: Concentration, isotopic composition and maternal transfer. Marine Pollution Bulletin, 60(3), 433-439. https://doi.org/10.1016/j.marpolbul.2009.10.004.
Pain, D. J., Mateo, R., & Green, R. E. (2019). Effects of lead from ammunition on birds and other wildlife: A review and update. Ambio, 48(9), 935-953. https://doi.org/10.1007/s13280-019-01159-0.
Parthipan, P., & Muniyan, M. (2013). Effects of heavy metal nickel on hematological parameters of fresh water fish. Cirrhinus mrigala. Journal of Enivronment and Current Life Science, 1, 46-55.
Perrault, J. R. (2014). Mercury and selenium ingestion rates of Atlantic leatherback sea turtles (Dermochelys coriacea): A cause for concern in this species? Marine Environmental Research, 99, 160-169. https://doi.org/10.1016/j.marenvres.2014.04.011.
Perrault, J. R., Stacy, N. I., Lehner, A. F., Poor, S. K., Buchweitz, J. P., & Walsh, C. J. (2017). Toxic elements and associations with hematology, plasma biochemistry, and protein electrophoresis in nesting loggerhead sea turtles (Caretta caretta) from Casey Key, Florida. Environmental Pollution, 231, 1398-1411. https://doi.org/10.1016/j.envpol.2017.09.001.
Potysz, A., Binkowski, L. J., Kierczak, J., & Rattner, B. A. (2023). Drivers of Pb, Sb and As release from spent gunshot in wetlands: Enhancement by organic matter and native microorganisms. Science of the Total Environment, 857(Pt 1), 159121.
Reich, K. J., Bjorndal, K. A., & Bolten, A. B. (2007). The ‘lost years’ of green turtles: Using stable isotopes to study cryptic lifestages. Biology Letters, 3(6), 712-714. https://doi.org/10.1098/rsbl.2007.0394.
Rooney, C. P., McLaren, R. G., & Condron, L. M. (2007). Control of lead solubility in soil contaminated with lead shot: Effect of soil pH. Environmental Pollution, 149(2), 149-157. https://doi.org/10.1016/j.envpol.2007.01.009.
Russell, D. J., & Balazs, G. H. (2009). Dietary shifts by green turtles (Chelonia mydas) in the Kāne'ohe bay region of the Hawaiian islands: A 28-year study. Pacific Science, 63(2), 181-192. https://doi.org/10.2984/049.063.0202.
Sakai, H., Saeki, K., Ichihashi, H., Suganuma, H., Tanabe, S., & Tatsukawa, R. (2000). Species-specific distribution of heavy metals in tissues and organs of logerhead turtle (Caretta caretta) and green turtle (Chelonia mydas) from Japanese coastal waters. Marine Pollution Bulletin, 40(8), 701-709.
Salice, C. J., Suski, J. G., Bazar, M. A., & Talent, L. G. (2009). Effects of inorganic lead on Western fence lizards (Sceloporus occidentalis). Environmental Pollution, 157(12), 3457-3464. https://doi.org/10.1016/j.envpol.2009.06.013.
Shaw, K. R., Lynch, J. M., Balazs, G. H., Jones, T. T., Pawloski, J., Rice, M. R., French, A. D., Liu, J., Cobb, G. P., & Klein, D. M. (2021). Trace element concentrations in blood and scute tissues from wild and captive Hawaiian green sea turtles (Chelonia mydas). Environmental Toxicology and Chemistry, 40(1), 208-218. https://doi.org/10.1002/etc.4911.
Sinaei, M. and Bolouki, M. (2017). Metals in blood and eggs of green sea turtles (Chelonia mydas) from nesting colonies of the Northern coast of the Sea of Oman. Archives of Environmental Contamination and Toxicology, 73(4), 552-561. https://doi.org/10.1007/s00244-017-0421-x.
Sparling, D. W. (2016). Ecotoxicology essentials: Environmental contaminants and their biological effects on animals and plants. Academic Press.
Suhring, R., Diamond, M. L., Bernstein, S., Adams, J. K., Schuster, J. K., Fernie, K., Elliott, K., Stern, G., & Jantunen, L. M. (2021). Organophosphate esters in the Canadian Arctic Ocean. Environmental Science and Technology, 55(1), 304-312. https://doi.org/10.1021/acs.est.0c04422.
Sutherland, R. A., Day, J. P., & Bussen, J. O. (2003). Lead concentrations, isotope ratios, and source apportionment in road deposited sediments, Honolulu, Oahu, Hawaii. Water, Air, & Soil Pollution, 142, 165-186. https://doi.org/10.1023/A:1022026612922.
Svanberg, F., Mateo, R., Hillstrom, L., Green, A. J., Taggart, M. A., Raab, A., & Meharg, A. A. (2006). Lead isotopes and lead shot ingestion in the globally threatened marbled teal (Marmaronetta angustirostris) and white-headed duck (Oxyura leucocephala). Science of the Total Environment, 370(2-3), 416-424. https://doi.org/10.1016/j.scitotenv.2006.07.006.
Takamatsu, T., Murata, T., Koshikawa, M. K., & Watanabe, M. (2010). Weathering and dissolution rates among Pb shot pellets of differing elemental compositions exposed to various aqueous and soil conditions. Archives of Environmental Contamination and Toxicology, 59(1), 91-99. https://doi.org/10.1007/s00244-009-9449-x.
Takeuchi, N. Y., Walsh, M. T., Bonde, R. K., Powell, J. A., Bass, D. A., Gaspard Iii, J. C., & Barber, D. S. (2016). Baseline reference range for trace metal concentrations in whole blood of wild and managed West Indian Manatees (Trichechus manatus) in Florida and Belize. Aquatic Mammals, 42(4), 440-453. https://doi.org/10.1578/am.42.4.2016.440.
US Environmental Protection Agency. (January 1998). Method 6020A: Inductively coupled plasma- mass spectrometry.
van de Merwe, J. P. (2008). Persistent organic pollutants and heavy metals in the green sea turtle, Chelonia mydas [Doctoral dissertation, Griffith University].
Villa, C. A., Finlayson, S., Limpus, C., & Gaus, C. (2015). A multi-element screening method to identify metal targets for blood biomonitoring in green sea turtles (Chelonia mydas). Science of the Total Environment, 512-513, 613-621. https://doi.org/10.1016/j.scitotenv.2014.11.100.
Villa, C. A., Flint, M., Bell, I., Hof, C., Limpus, C. J., & Gaus, C. (2017). Trace element reference intervals in the blood of healthy green sea turtles to evaluate exposure of coastal populations. Environmental Pollution, 220(Pt B), 1465-1476. https://doi.org/10.1016/j.envpol.2016.10.085.
Williams, S. L. (1988). Thalassia testudinum productivity and grazing by green turtles in a highly disturbed seagrass bed. Marine Biology, 98(3), 447-455.
Yipel, M., Tekeli, I. O., Isler, C. T., & Altug, M. E. (2017). Heavy metal distribution in blood, liver and kidneys of Loggerhead (Caretta caretta) and green (Chelonia mydas) sea turtles from the Northeast Mediterranean Sea. Marine Pollution Bulletin, 125(1-2), 487-491. https://doi.org/10.1016/j.marpolbul.2017.08.011.
Zar, J. H. (1996). Biostatistical analysis (3rd ed.). Prentice Hall.
فهرسة مساهمة: Keywords: Hawai'i; Lead; Marine turtle; Reptile; Scute
المشرفين على المادة: 2P299V784P (Lead)
0 (Water Pollutants, Chemical)
0 (Metals, Heavy)
N712M78A8G (Arsenic)
تواريخ الأحداث: Date Created: 20230303 Date Completed: 20230424 Latest Revision: 20230424
رمز التحديث: 20240628
DOI: 10.1002/etc.5601
PMID: 36866800
قاعدة البيانات: MEDLINE