دورية أكاديمية

Vestibular perceptual thresholds for rotation about the yaw, roll, and pitch axes.

التفاصيل البيبلوغرافية
العنوان: Vestibular perceptual thresholds for rotation about the yaw, roll, and pitch axes.
المؤلفون: Allred AR; Smead Department of Aerospace Engineering Sciences, University of Colorado-Boulder, Boulder, CO, United States. aaron.allred@colorado.edu., Clark TK; Smead Department of Aerospace Engineering Sciences, University of Colorado-Boulder, Boulder, CO, United States.
المصدر: Experimental brain research [Exp Brain Res] 2023 Apr; Vol. 241 (4), pp. 1101-1115. Date of Electronic Publication: 2023 Mar 04.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Verlag Country of Publication: Germany NLM ID: 0043312 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1106 (Electronic) Linking ISSN: 00144819 NLM ISO Abbreviation: Exp Brain Res Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer Verlag
مواضيع طبية MeSH: Reflex, Vestibulo-Ocular* , Vestibule, Labyrinth*, Humans ; Brain ; Head ; Head Movements
مستخلص: This effort seeks to further assess human perception of self-motion by quantifying and comparing earth-vertical rotational vestibular perceptual thresholds about the yaw, roll, and pitch axes. Early seminal works (Benson Aviat Space Environ Med 60:205-213, 1989) quantified thresholds for yaw, roll, and pitch rotations, using single-cycle sinusoids in angular acceleration with a frequency of 0.3 Hz (3.33 s motion duration) and found yaw thresholds to be significantly lower than roll and pitch thresholds (1.58-1.20 deg/s vs. 2.07 deg/s and 2.04 deg/s, respectively). Our current effort uses modern methods and definitions to reassess if rotational thresholds differ between these three axes of rotation in ten human subjects at 0.3 Hz and additionally across a range of frequencies: 0.1 Hz, 0.3 Hz, and 0.5 Hz. In contrast to the established findings of Benson et al., no statistically significant differences were found between the three rotational axes at 0.3 Hz. Further, no statistically significant differences were found at any of these frequencies. Instead, a consistent pattern was found for yaw, pitch, and roll of increasing thresholds with decreasing rotational frequency, consistent with the brain employing high-pass filter mechanisms for decision-making. We also fill a gap in the literature by extending the quantification of pitch rotation thresholds to 0.1 Hz. Finally, we assessed inter-individual trends between these three frequencies and across all three axes of rotation. In thoroughly considering methodological and other differences between the current and previous studies, we conclude yaw rotation thresholds do not differ from those in roll or pitch.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Agrawal Y, Bremova T, Kremmyda O, Strupp M, MacNeilage PR (2013) Clinical testing of otolith function: perceptual thresholds and myogenic potentials. J Assoc Res Otolaryngol 14(6):905–915. https://doi.org/10.1007/s10162-013-0416-x. (PMID: 10.1007/s10162-013-0416-x240776723825026)
Allred, A. R. (2021). Vestibular Perceptual Thresholds for Angular Rotation about the Yaw, Roll, and Pitch Axes [University of Colorado Boulder]. https://scholar.colorado.edu/concern/graduate_thesis_or_dissertations/x920fz25n.
Angelaki DE, Cullen KE (2008) Vestibular system: the many facets of a multimodal sense. Annu Rev Neurosci 31(1):125–150. https://doi.org/10.1146/annurev.neuro.31.060407.125555. (PMID: 10.1146/annurev.neuro.31.060407.12555518338968)
Benson AJ, Hutt EC, Brown SF (1989) Thresholds for the perception of whole body angular movement about a vertical axis. Aviat Space Environ Med 60(3):205–213. (PMID: 2712798)
Bermúdez Rey MC, Clark TK, Wang W, Leeder T, Bian Y, Merfeld DM (2016) Vestibular perceptual thresholds increase above the age of 40. Front Neurol. https://doi.org/10.3389/fneur.2016.00162. (PMID: 10.3389/fneur.2016.00162277522525046616)
Blanks RH, Estes MS, Markham CH (1975) Physiologic characteristics of vestibular first-order canal neurons in the cat. II. Response to constant angular acceleration. J Neurophysiol 38(5):1250–1268. https://doi.org/10.1152/jn.1975.38.5.1250. (PMID: 10.1152/jn.1975.38.5.1250809548)
Bremova T, Caushaj A, Ertl M, Strobl R, Böttcher N, Strupp M, MacNeilage PR (2016) Comparison of linear motion perception thresholds in vestibular migraine and Menière’s disease. Eur Arch Otorhinolaryngol 273(10):2931–2939. https://doi.org/10.1007/s00405-015-3835-y. (PMID: 10.1007/s00405-015-3835-y267284845014886)
Chaudhuri SE, Merfeld DM (2013) Signal detection theory and vestibular perception: III. Estimating unbiased fit parameters for psychometric functions. Exp Brain Res 225(1):133–146. https://doi.org/10.1007/s00221-012-3354-7. (PMID: 10.1007/s00221-012-3354-723250442)
Clark TK, Merfeld DM (2021) Statistical approaches to identifying lapses in psychometric response data. Psychon Bull Rev 28(5):1433–1457. https://doi.org/10.3758/s13423-021-01876-2. (PMID: 10.3758/s13423-021-01876-233825094)
Clark TK, Yi Y, Galvan-Garza RC, Bermúdez Rey MC, Merfeld DM (2018) When uncertain, does human self-motion decision-making fully utilize complete information? J Neurophysiol 119(4):1485–1496. https://doi.org/10.1152/jn.00680.2017. (PMID: 10.1152/jn.00680.201729357467)
Cremer P (1998) Semicircular canal plane head impulses detect absent function of individual semicircular canals. Brain 121(4):699–716. https://doi.org/10.1093/brain/121.4.699. (PMID: 10.1093/brain/121.4.6999577395)
Gabriel GA, Harris LR, Gnanasegaram JJ, Cushing SL, Gordon KA, Haycock BC, Pichora-Fuller MK, Campos JL (2021) Vestibular perceptual thresholds in older adults with and without age-related hearing loss. Ear Hear. https://doi.org/10.1097/AUD.0000000000001118. (PMID: 10.1097/AUD.0000000000001118)
Gibb R, Ercoline B, Scharff L (2011) Spatial disorientation: decades of pilot fatalities. Aviat Space Environ Med 82(7):717–724. https://doi.org/10.3357/ASEM.3048.2011. (PMID: 10.3357/ASEM.3048.201121748911)
Goldberg JM, Fernandez C (1975) Vestibular mechanisms. Annu Rev Physiol 37:129–62. https://doi.org/10.1146/annurev.ph.37.030175.001021.
Grabherr L, Nicoucar K, Mast FW, Merfeld DM (2008) Vestibular thresholds for yaw rotation about an earth-vertical axis as a function of frequency. Exp Brain Res 186(4):677–681. https://doi.org/10.1007/s00221-008-1350-8. (PMID: 10.1007/s00221-008-1350-818350283)
Heinle MTE, & Ercoline MWR (2003). Spatial disorientation: causes, consequences and countermeasures for the USAF. 8.
Hosman R, Stassen H (1999) Pilot’s perception in the control of aircraft motions. Control Eng Pract 7(11):1421–1428. https://doi.org/10.1016/S0967-0661(99)00111-2. (PMID: 10.1016/S0967-0661(99)00111-211542920)
Karmali F, Chaudhuri SE, Yi Y, Merfeld DM (2016) Determining thresholds using adaptive procedures and psychometric fits: evaluating efficiency using theory, simulations, and human experiments. Exp Brain Res 234(3):773–789. (PMID: 10.1007/s00221-015-4501-826645306)
Karmali F, Bermúdez Rey MC, Clark TK, Wang W, Merfeld DM (2017) Multivariate analyses of balance test performance, vestibular thresholds, and age. Front Neurol 8:578. https://doi.org/10.3389/fneur.2017.00578. (PMID: 10.3389/fneur.2017.00578291676565682300)
King S, Priesol AJ, Davidi SE, Merfeld DM, Ehtemam F, Lewis RF (2019) Self-motion perception is sensitized in vestibular migraine: pathophysiologic and clinical implications. Sci Rep 9(1):14323. https://doi.org/10.1038/s41598-019-50803-y. (PMID: 10.1038/s41598-019-50803-y315861516778132)
Kingma H (2005) Thresholds for perception of direction of linear acceleration as a possible evaluation of the otolith function. BMC Ear Nose Throat Disord 5(1):5. https://doi.org/10.1186/1472-6815-5-5. (PMID: 10.1186/1472-6815-5-5159720961182363)
Lewis RF, Priesol AJ, Nicoucar K, Lim K, Merfeld DM (2011a) Abnormal motion perception in vestibular migraine: motion perception in vestibular migraine. Laryngoscope 121(5):1124–1125. https://doi.org/10.1002/lary.21723. (PMID: 10.1002/lary.21723215201353804168)
Lewis RF, Priesol AJ, Nicoucar K, Lim K, Merfeld DM (2011b) Dynamic tilt thresholds are reduced in vestibular migraine. J Vestib Res 21(6):323–330. https://doi.org/10.3233/VES-2011-0422. (PMID: 10.3233/VES-2011-0422223489373767296)
Lim K, Karmali F, Nicoucar K, Merfeld DM (2017) Perceptual precision of passive body tilt is consistent with statistically optimal cue integration. J Neurophysiol 117(5):2037–2052. https://doi.org/10.1152/jn.00073.2016. (PMID: 10.1152/jn.00073.2016281794775434481)
Merfeld DM (2011) Signal detection theory and vestibular thresholds: I. Basic theory and practical considerations. Exp Brain Res 210(3):389–405. https://doi.org/10.1007/s00221-011-2557-7. (PMID: 10.1007/s00221-011-2557-7213596623096492)
Merfeld DM, Clark TK, Lu YM, Karmali F (2016) Dynamics of individual perceptual decisions. J Neurophysiol 115(1):39–59. https://doi.org/10.1152/jn.00225.2015. (PMID: 10.1152/jn.00225.201526467513)
Nouri S, Karmali F (2018) Variability in the vestibulo-ocular reflex and vestibular perception. Neuroscience 393:350–365. https://doi.org/10.1016/j.neuroscience.2018.08.025. (PMID: 10.1016/j.neuroscience.2018.08.02530189227)
Poisson RJ, Miller ME (2014) Spatial disorientation mishap trends in the U.S. Air force 1993–2013. Aviat Space Environ Med 85(9):919–924. https://doi.org/10.3357/ASEM.3971.2014. (PMID: 10.3357/ASEM.3971.201425197890)
Priesol AJ, Valko Y, Merfeld DM, Lewis RF (2014) Motion perception in patients with idiopathic bilateral vestibular hypofunction. Otolaryngol Head Neck Surg 150(6):1040–1042. https://doi.org/10.1177/0194599814526557. (PMID: 10.1177/019459981452655724647642)
Robinson DA (1982) The use of matrices in analyzing the three-dimensional behavior of the vestibulo-ocular reflex. Biol Cybern 46(1):53–66. https://doi.org/10.1007/BF00335351. (PMID: 10.1007/BF003353516985203)
Rosenberg MJ, Galvan-Garza RC, Clark TK, Sherwood DP, Young LR, Karmali F (2018) Human manual control precision depends on vestibular sensory precision and gravitational magnitude. J Neurophysiol 120(6):3187–3197. https://doi.org/10.1152/jn.00565.2018. (PMID: 10.1152/jn.00565.2018303796106442919)
Suri K, Clark TK (2020) Human vestibular perceptual thresholds for pitch tilt are slightly worse than for roll tilt across a range of frequencies. Exp Brain Res 238(6):1499–1509. https://doi.org/10.1007/s00221-020-05830-x. (PMID: 10.1007/s00221-020-05830-x32444940)
Treutwein B (1995) Adaptive psychophysical procedures. Vision Res 35(17):2503–2522. https://doi.org/10.1016/0042-6989(95)00016-X. (PMID: 10.1016/0042-6989(95)00016-X8594817)
Valko Y, Lewis RF, Priesol AJ, Merfeld DM (2012) Vestibular labyrinth contributions to human whole-body motion discrimination. J Neurosci 32(39):13537–13542. https://doi.org/10.1523/JNEUROSCI.2157-12.2012. (PMID: 10.1523/JNEUROSCI.2157-12.2012230154433467969)
van Erp JBF, Groen EL, Bos JE, van Veen HAHC (2006) A tactile cockpit instrument supports the control of self-motion during spatial disorientation. Hum Factors 48(2):219–228. https://doi.org/10.1518/001872006777724435. (PMID: 10.1518/00187200677772443516884044)
Wagner AR, Kobel MJ, Merfeld DM (2021) Impact of canal-otolith integration on postural control. Front Integr Neurosci 15:773008. https://doi.org/10.3389/fnint.2021.773008. (PMID: 10.3389/fnint.2021.773008349701268713561)
Wagner AR, Kobel MJ, Merfeld DM (2022) Impacts of rotation axis and frequency on vestibular perceptual thresholds. Multisens Res 35(3):259–287. https://doi.org/10.1163/22134808-bja10069. (PMID: 10.1163/22134808-bja1006935065535)
Yi Y, Wang W, Merfeld DM (2019) A quantitative confidence signal detection model: 2. confidence analysis. J Neurophysiol 122(3):904–921. https://doi.org/10.1152/jn.00400.2016. (PMID: 10.1152/jn.00400.2016312153146766740)
معلومات مُعتمدة: 80NSSC20K1202 Space Technology Mission Directorate
فهرسة مساهمة: Keywords: Decision-making; High-pass filter; Semicircular canals; Spatial orientation perception
تواريخ الأحداث: Date Created: 20230304 Date Completed: 20230411 Latest Revision: 20230411
رمز التحديث: 20230411
DOI: 10.1007/s00221-023-06570-4
PMID: 36871088
قاعدة البيانات: MEDLINE