دورية أكاديمية

Molecular detection of Babesia spp. and Rickettsia spp. in coatis (Nasua nasua) and associated ticks from midwestern Brazil.

التفاصيل البيبلوغرافية
العنوان: Molecular detection of Babesia spp. and Rickettsia spp. in coatis (Nasua nasua) and associated ticks from midwestern Brazil.
المؤلفون: Perles L; Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane, S/N, Zona Rural, Jaboticabal, SP, 14884-900, Brazil., Barreto WTG; Post-Graduation of Ecology and Conservation, Mato Grosso Do Sul Federal University, Campo Grande, MS, 13471-410, Brazil., de Macedo GC; Laboratory of Parasitic Biology, Environmental Sciences and Farming Sustainability, Dom Bosco Catholic University, Campo Grande, MS, 13471-410, Brazil., Calchi AC; Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane, S/N, Zona Rural, Jaboticabal, SP, 14884-900, Brazil., Bezerra-Santos M; Department of Veterinary Medicine, University of Bari, Valenzano, Italy., Mendoza-Roldan JA; Department of Veterinary Medicine, University of Bari, Valenzano, Italy., Otranto D; Department of Veterinary Medicine, University of Bari, Valenzano, Italy.; Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran., Herrera HM; Post-Graduation of Ecology and Conservation, Mato Grosso Do Sul Federal University, Campo Grande, MS, 13471-410, Brazil.; Laboratory of Parasitic Biology, Environmental Sciences and Farming Sustainability, Dom Bosco Catholic University, Campo Grande, MS, 13471-410, Brazil., Barros-Battesti DM; Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane, S/N, Zona Rural, Jaboticabal, SP, 14884-900, Brazil., Machado RZ; Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane, S/N, Zona Rural, Jaboticabal, SP, 14884-900, Brazil., André MR; Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane, S/N, Zona Rural, Jaboticabal, SP, 14884-900, Brazil. mr.andre@unesp.br.
المصدر: Parasitology research [Parasitol Res] 2023 May; Vol. 122 (5), pp. 1151-1158. Date of Electronic Publication: 2023 Mar 09.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer International Country of Publication: Germany NLM ID: 8703571 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1955 (Electronic) Linking ISSN: 09320113 NLM ISO Abbreviation: Parasitol Res Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer International, c1987-
مواضيع طبية MeSH: Rickettsia*/genetics , Ticks* , Babesia*/genetics , Procyonidae* , Ixodidae*/microbiology, Humans ; Animals ; Brazil/epidemiology ; Rodentia ; Opossums ; Amblyomma
مستخلص: Procyonids are reservoirs of many zoonotic infectious diseases, including tick-borne pathogens. The role of coatis (Nasua nasua) in the epidemiology of piroplasmids and Rickettsia has not been fully addressed in Brazil. To molecularly study these agents in coatis and associated ticks, animals were sampled in two urban areas in Midwestern Brazil. Blood (n = 163) and tick (n = 248) DNA samples were screened by PCR assays targeting the 18S rRNA and gltA genes of piroplasmids and Rickettsia spp., respectively. Positive samples were further molecularly tested targeting cox-1, cox-3, β-tubulin, cytB, and hsp70 (piroplasmid) and ompA, ompB, and htrA 17-kDa (Rickettsia spp.) genes, sequenced and phylogenetically analyzed. All coatis' blood samples were negative for piroplasmids, whereas five pools of ticks (2%) were positive for two different sequences of Babesia spp.. The first from Amblyomma sculptum nymphs was close (i.e., ≥ 99% nucleotide identity) to a Babesia sp. previously found in capybaras (Hydrochoerus hydrochaeris); the second from Amblyomma dubitatum nymphs and Amblyomma spp. larvae was identical (100% nucleotide identity) to a Babesia sp. detected in opossums (Didelphis albiventris) and associated ticks. Four samples (0.8%) were positive by PCR to two different Rickettsia spp. sequences, being the first from Amblyomma sp. larva identical to Rickettsia belli and the second from A. dubitatum nymph identical to Rickettsia species from Spotted Fever Group (SFG). The detection of piroplasmids and SFG Rickettsia sp. highlights the importance of Amblyomma spp. in the maintenance of tick-borne agents in urban parks where humans and wild and domestic animals are living in sympatry.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Abdad MY, Abou Abdallah R, Fournier PE, Stenos J, Vasoo S (2018) A concise review of the epidemiology and diagnostics of rickettsioses: Rickettsia and Orientia spp. J Clin Microbiol 56(8):e01728-e1817. (PMID: 29769278606279410.1128/JCM.01728-17)
André MR (2018) Diversity of Anaplasma and Ehrlichia/Neoehrlichia agents in terrestrial wild carnivores worldwide: implications for human and domestic animal health and wildlife conservation. Front Vet Sci 5:293. https://doi.org/10.3389/fvets.2018.00293. (PMID: 10.3389/fvets.2018.00293305334176265506)
Baba K, Kaneda T, Nishimura H, Sato H (2013) Molecular detection of spotted fever group Rickettsia in feral raccoons (Procyon lotor) in the western part of Japan. J Vet Med Sci 75(2):195–197. (PMID: 2298629910.1292/jvms.12-0143)
Barbieri AR, Romero L, Labruna MB (2012) Rickettsia bellii infecting Amblyomma sabanerae ticks in El Salvador. Pathog Glob Health 106(3):188–189. (PMID: 23265378400158010.1179/2047773212Y.0000000022)
Barbosa AD, Austen J, Portas TJ, Amigo JÁ, Ahlstrom LA, Oskam CL, Irwin PJ (2019) Sequence analyses at mitochondrial and nuclear loci reveal a novel Theileria sp and AID in the phylogenetic resolution of piroplasms from Australian marsupials and ticks. PLoS One 12:e0225822. (PMID: 10.1371/journal.pone.0225822)
Barreto WTG, Herrera HM, de Macedo GC, Rucco AC, de Assis WO, Oliveira-Santos LG, de Oliveira Porfírio GE (2021) Density and survivorship of the South American coati (Nasua nasua) in urban areas in Central-Western Brazil. Hystrix 32(1):82.
Bermúdez CSE, Troyo A (2018) A review of the genus Rickettsia in Central America. Res Rep Trop Med 9:103. (PMID: 300503616047601)
Birkenheuer AJ, Marr HS, Hladio N, Acton AE (2007) Molecular evidence of prevalent dual piroplasma infections in North American raccoons (Procyon lotor). Parasitol 135:33–37. (PMID: 10.1017/S0031182007003538)
Birkenheuer AJ, Levy MG, Breitschwerdt EB (2003) Development and evaluation of a seminested PCR for detection and differentiation of Babesia gibsoni (Asian genotype) and B. canis DNA in canine blood samples. J Clin Microb 41(9): 4172–4177.
Black W, Piesman J (1994) Phylogeny of hard-and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences. Proc Natl Acad Sci USA 91:10034–10038. (PMID: 79378324495210.1073/pnas.91.21.10034)
Campos JBV, Martins FS, de Oliveira CE, Taveira AA, Oliveira JR, Gonçalves LR, Cordeiro MD, Calchi AC, de Campos BL, Serpa MCA, Barbieri ARM, Labruna MB, Machado RZ, de Andrade GB, André MR, Herrera HM (2021) Tick-borne zoonotic agents infecting horses from an urban area in Midwestern Brazil: epidemiological and hematological features. Trop Anim Health Prod 53(5):475. (PMID: 34553290845777610.1007/s11250-021-02887-w)
Campos JBV, Martins FS, Macedo GC, Barreto WTG, Oliveira CE, Barbieri ARM, Labruna MB, Oliveira-Santos LGR, Herrera HM (2022) Serological exposure of spotted fever group Rickettsia in capybaras (Hydrochoerus hydrochaeris) from urban parks in Campo Grande, Brazilian Midwest. Rev Soc Bras Med Trop 55(e0192):2022. https://doi.org/10.1590/0037-8682-0192-2022.eCollection. (PMID: 10.1590/0037-8682-0192-2022.eCollection)
Castellaw AH, Chenney EF, Varela-Stokes AS (2011) Tick-borne disease agents in various wildlife from Mississippi. Vector-Borne Zoonotic Dis 11(4):439–442. (PMID: 2084601610.1089/vbz.2009.0221)
Clark K, Savick K, Butler J (2012) Babesia microti in rodents and raccoons from northeast Florida. J Parasitol 98(6):1117–1121. (PMID: 2264685110.1645/GE-3083.1)
Cleaveland S, Laurenson MK, Taylor LH (2001) Diseases of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence. Philos Trans R Soc Lond B Biol Sci 356(1411):991–999. (PMID: 11516377108849410.1098/rstb.2001.0889)
Corduneanu A, Hrazdilová K, Sándor AD, Matei IA, Ionică AM, Barti L, Ciocănău MA, Măntoiu DȘ, Coroiu I, Hornok S, Fuehrer HP, Leitner N, Bagó Z, Stefke K, Modrý D, Mihalca AD (2017) Babesia vesperuginis, a neglected piroplasmid: new host and geographical records, and phylogenetic relations. Parasit Vectors 10(1):598. (PMID: 29208011571803210.1186/s13071-017-2536-3)
Criado-Fornelio A, Buling A, Casado N, Gimenez C, Ruas J, Wendt L, Barba-Carretero J (2009) Molecular characterization of arthropod-borne hematozoans in wild mammals from Brazil, Venezuela and Spain. Acta Parasitol 54(3):187–193. (PMID: 10.2478/s11686-009-0031-5)
Dantas-Torres F, Martins TF, Muñoz-Leal S, Onofrio VC, Barros-Battesti DM (2019) Ticks (Ixodida: Argasidae, Ixodidae) of Brazil: updated species checklist and taxonomic keys. Ticks Tick-Borne Dis 10(6):101252. (PMID: 3125553410.1016/j.ttbdis.2019.06.012)
De Sousa KCM, Fernandes MP, Herrera HM, Freschi CR, Machado RZ, André MR (2018) Diversity of piroplasmids among wild and domestic mammals and ectoparasites in Pantanal wetland. Brazil Ticks Tick-Borne Dis 9(2):245–253. (PMID: 2894193510.1016/j.ttbdis.2017.09.010)
Emmons L, Helgen K (2016) Nasua nasua. The IUCN Red List of Threatened Species 2016: e.T41684A45216227.  https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T41684A45216227.en.
Friedhoff KT (2018) Transmission of Babesia. In: Babesiosis of domestic animals and man 23–52 CRC Press.
Garrett KB, Hernandez SM, Balsamo G, Barron H, Beasley JC, Brown JD, Cloherty E, Farid H, Gabriel M, Groves B, Hamer S, Hill J, Lewis M, McManners K, Nemeth N, Oesterle P, Ortiz S, Peshock L, Schnellbacher R, Schott R, Yabsley MJ (2019) Prevalence, distribution, and diversity of cryptic piroplasm infections in raccoons from selected areas of the United States and Canada. Int J Parasitol Paras Wildl 9:224–233. (PMID: 10.1016/j.ijppaw.2019.05.007)
Goethert HK, Telford SR (2003) What is Babesia microti? Parasitol 127(4):301–309. (PMID: 10.1017/S0031182003003822)
Gonçalves LR, Paludo G, Bisol TB, Perles L, de Oliveira LB, de Oliveira CM, André MR (2021) Molecular detection of piroplasmids in synanthropic rodents, marsupials, and associated ticks from Brazil, with phylogenetic inference of a putative novel Babesia sp. from white-eared opossum (Didelphis albiventris). Parasitol Res 20(10):3537–3546. (PMID: 10.1007/s00436-021-07284-8)
Greay TL, Zahedi A, Krige A, Owens JM, Rees RL, Ryan UM, Oskam CL, Irwin PJ (2018) Endemic, exotic and novel apicomplexan parasites detected during a national study of ticks from companion animals in Australia. Parasit Vectors 11:197. (PMID: 29558984585954910.1186/s13071-018-2775-y)
Hersh MH, Tibbetts M, Strauss M, Ostfeld RS, Keesing F (2012) Reservoir competence of wildlife host species for Babesia microti. Emerg Infec Dis 18(12):1951–1957. (PMID: 10.3201/eid1812.111392)
Hildebrand J, Perec-Matysiak A, Popiołek M, Merta D, Myśliwy I, Buńkowska-Gawlik K (2022) A molecular survey of spotted fever group rickettsiae in introduced raccoons (Procyon lotor). Parasit Vect 15(1):1–8. (PMID: 10.1186/s13071-022-05280-0)
Jalovecka M, Hajdusek O, Sojka D, Kopacek P, Malandrin L (2018) The complexity of piroplasms life cycles. Front Cell Infect Microbiol 248:8. https://doi.org/10.3389/fcimb.2018.00248. (PMID: 10.3389/fcimb.2018.00248)
Jalovecka M, Sojka D, Ascencio M, Schnittger L (2019) Babesia life cycle–when phylogeny meets biology. Trends Parasitol 13:356–368. https://doi.org/10.1016/j.pt.2019.01.007. (PMID: 10.1016/j.pt.2019.01.007)
Jefferies R, Ryan UM, Irwin PJ (2007) PCR–RFLP for the detection and differentiation of the canine piroplasm species and its use with filter paper-based technologies. Vet Parasitol 144:20–27. (PMID: 1712700510.1016/j.vetpar.2006.09.022)
Jinnai M, Kawabuchi-Kurata T, Tsuji M, Nakajima R, Fujisawa K, Nagata S, Ishihara C (2009) Molecular evidence for the presence of new Babesia species in feral raccoons (Procyon lotor) in Hokkaido. Japan Vet Parasitol 162(3–4):241–247. (PMID: 1934912110.1016/j.vetpar.2009.03.016)
Kawabuchi T, Tsuji M, Sado A, Matoba Y, Asakawa M, Ishihara C (2005) Babesia microti-like parasites detected in feral raccoons (Procyon lotor) captured in Hokkaido. Japan J Vet Med Sci 67(8):825–827. (PMID: 1614167210.1292/jvms.67.825)
Labruna MB, Whitworth T, Bouyer DH, McBride J, Camargo LMA, Camargo EP, Walker DH (2004a) Rickettsia bellii and Rickettsia amblyommii in Amblyomma ticks from the state of Rondônia, Western Amazon, Brazil. J Med Entomol 41:1073–1081. (PMID: 1560564710.1603/0022-2585-41.6.1073)
Labruna MB, Whitworth T, Horta MC, Bouyer DH, McBride JW, Pinter A, Walker DH (2004b) Rickettsia species infecting Amblyomma cooperi ticks from an area in the state of Sao Paulo, Brazil, where Brazilian spotted fever is endemic. J Clin Microbiol 42(1):90–98. (PMID: 1471573732173010.1128/JCM.42.1.90-98.2004)
Labruna MB, Pacheco RC, Richtzenhain LJ, Szabo MP (2007) Isolation of Rickettsia rhipicephali and Rickettsia bellii from Haemaphysalis juxtakochi ticks in the state of São Paulo. Brazil Appl Environ Microbiol 73(3):869–873. (PMID: 1714236110.1128/AEM.02249-06)
Labruna MB, Mattar S, Nava S, Bermudez S, Venzal JM, Dolz G, Zavala-Castro J (2011) Rickettsioses in Latin America, Caribbean, Spain and Portugal. MVZ Córdoba 16(2):2435–2457. (PMID: 10.21897/rmvz.282)
Magalhães-Matos PC, de Araújo IM, de Almeida Valim JR, Ogrzewalska M, Guterres A, Cordeiro MD, da Fonseca AH (2022) Detection of Rickettsia spp. in ring-tailed coatis (Nasua nasua) and ticks of the Iguaçu National Park Brazilian Atlantic Rainforest. Ticks Tick-Borne Dis 13(2):101891. (PMID: 3494256110.1016/j.ttbdis.2021.101891)
Martins TF, Onofrio VC, Barros-Battesti DM, Labruna MB (2010) Nymphs of the genus Amblyomma (Acari: Ixodidae) of Brazil: descriptions, redescriptions, and identification key. Ticks Tick-Borne Dis 1(2):75–99. (PMID: 2177151410.1016/j.ttbdis.2010.03.002)
McIntosh D, Bezerra RA, Luz HR, Faccini JLH, Gaiotto FA, Giné GAF, Albuquerque GR (2015) Detection of Rickettsia bellii and Rickettsia amblyommii in Amblyomma longirostre (Acari: Ixodidae) from Bahia state, northeast Brazil. Braz J Microbiol 46:879–883. (PMID: 26413074456885110.1590/S1517-838246320140623)
Mehrkens LR, Shender LA, Yabsley MJ, Shock BC, Chinchilla FA, Suarez J, Gilardi KV (2013) White-nosed coatis (Nasua narica) are a potential reservoir of Trypanosoma cruzi and other potentially zoonotic pathogens in Monteverde. Costa Rica J Wildl Dis 49(4):1014–1018. (PMID: 2450273210.7589/2013-01-005)
Moraes-Filho J, Costa FB, Gerardi M, Soares HS, Labruna MB (2018) Rickettsia rickettsii co-feeding transmission among Amblyomma aureolatum ticks. Emerg Infec Dis 24(11):2041. (PMID: 10.3201/eid2411.180451)
Neves LC, Sousa-Paula LCD, Dias AS, da Silva BBF, Paula WVDF, de Paula LGF, Dantas-Torres F (2023) Detection of an undescribed Babesia sp. in capybaras and Amblyomma ticks in Central-Western Brazil. Animals 13(1):94. (PMID: 36611703981750810.3390/ani13010094)
Otranto D, Cantacessi C, Pfeffer M, Dantas-Torres F, Brianti E, Deplazes P, Genchi C, Guberti V, Capelli G (2015) The role of wild canids and felids in spreading parasites to dogs and cats in Europe: Part I: Protozoa and tick-borne agents. Vet Parasitol 213:12–23. (PMID: 2600366910.1016/j.vetpar.2015.04.022)
Pacheco RC, Horta MC, Moraes-Filho J, Ataliba AC, Pinter A, Labruna MB (2007) Rickettsial infection in capybaras (Hydrochoerus hydrochaeris) from São Paulo, Brazil: serological evidence for infection by Rickettsia bellii and Rickettsia parkeri. Biomedica 27(3):364–371. (PMID: 1832010210.7705/biomedica.v27i3.199)
Parola P, Paddock CD, Socolovschi C, Labruna MB, Mediannikov O, Kernif T, Raoult D (2013) Update on tick-borne rickettsioses around the world: a geographic approach. Clin Microbiol Rev 26(4):657–702. (PMID: 24092850381123610.1128/CMR.00032-13)
Perles L, Martins TF, Barreto WTG, Carvalho de Macedo G, Herrera HM, Mathias LA, André MR (2022) Diversity and seasonal dynamics of ticks on ring-tailed coatis Nasua nasua (Carnivora: Procyonidae) in two urban areas from Midwestern Brazil. Animals 12(3):293. (PMID: 35158617883374110.3390/ani12030293)
Polo G, Mera Acosta C, Labruna MB, Ferreira F (2017) Transmission dynamics and control of Rickettsia rickettsii in populations of Hydrochoerus hydrochaeris and Amblyomma sculptum. PLoS Negl Trop Dis 11(6):e0005613. (PMID: 28582429547233110.1371/journal.pntd.0005613)
Rainwater KL, Marchese K, Slavinski S, Humberg LA, Dubovi EJ, Jarvis JA, Calle PP (2017) Health survey of free-ranging raccoons (Procyon lotor) in Central Park, New York, New York, USA: implications for human and domestic animal health. J Wildl Dis 53(2):272–284. (PMID: 2813513110.7589/2016-05-096)
Regnery RL, Spruill CL, Plikaytis B (1991) Genotypic identification of rickettsiae and estimation of intraspecies sequence divergence for portions of two rickettsial genes. J Bacteriol 173(5):1576–1589. (PMID: 167185620730610.1128/jb.173.5.1576-1589.1991)
Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574. (PMID: 1291283910.1093/bioinformatics/btg180)
Roux V, Raoult D (2000) Phylogenetic analysis of members of the genus Rickettsia using the gene encoding the outer-membrane protein rOmpB (ompB). Int J Syst Evol Microbiol 50(4):1449–1455. (PMID: 1093964910.1099/00207713-50-4-1449)
Sakai RK, Costa FB, Ueno TE, Ramirez DG, Soares JF, Fonseca AH, Barros-Battesti DM (2014) Experimental infection with Rickettsia rickettsii in an Amblyomma dubitatum tick colony, naturally infected by Rickettsia bellii. Ticks Tick-Borne Dis 5(6):917–923. (PMID: 2510878310.1016/j.ttbdis.2014.07.003)
Sashika M, Abe G, Matsumoto K, Inokuma H (2010) Molecular survey of rickettsial agents in feral raccoons (Procyon lotor) in Hokkaido Japan. Japanese J Infec Diseases 63(5):353–354. (PMID: 10.7883/yoken.63.353)
Schnittger L, Ganzinelli S, Bhoora R (2022) The Piroplasmida Babesia, Cytauxzoon, and Theileria in farm and companion animals: species compilation, molecular phylogeny, and evolutionary insights. Parasitol Res 121:1207–1245. (PMID: 3509837710.1007/s00436-022-07424-8)
Soares JF, Girotto A, Brandão PE, Da Silva AS, França RT, Lopes STA, Labruna MB (2011) Detection and molecular characterization of a canine piroplasm from Brazil. Vet Parasitol 180:203–208. (PMID: 2148969410.1016/j.vetpar.2011.03.024)
Souza CE, Moraes-Filho J, Ogrzewalska M, Uchoa FC, Horta MC, Souza SS, Labruna MB (2009) Experimental infection of capybaras Hydrochoerus hydrochaeris by Rickettsia rickettsii and evaluation of the transmission of the infection to ticks Amblyomma cajennense. Vet Parasitol 161(1–2):116–121. (PMID: 1914729310.1016/j.vetpar.2008.12.010)
Stöver BC, Müller KF (2010) TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinform 11(1):1–9. (PMID: 10.1186/1471-2105-11-7)
Thompson CS, Mangold AJ, Félix ML, Carvalho L, Armúa-Fernández MT, Venzal JM (2018) Molecular evidence of Babesia species in Procyon cancrivorus (Carnivora, Procyonidae) in Uruguay. Vet Parasitol Reg Stud Rep 13:230–233.
Tsuji M, Zamoto A, Kawabuchi T, Kataoka T, Nakajima R, Asakawa M, Ishihara C (2006) Babesia microti-like parasites detected in Eurasian red squirrels (Sciurus vulgaris orientis) in Hokkaido. Japan J Vet Med Sci 68(7):643–646. (PMID: 1689177410.1292/jvms.68.643)
Tufts DM, Goodman LB, Benedict MC, Davis AD, VanAcker MC, Diuk-Wasser M (2021) Association of the invasive Haemaphysalis longicornis tick with vertebrate hosts, other native tick vectors, and tick-borne pathogens in New York City, USA. Int J Parasitol 51(2–3):149–157. (PMID: 3313021410.1016/j.ijpara.2020.08.008)
Uilenberg G (2006) Babesia—a historical overview. Vet Parasitol 138(1–2):3–10. (PMID: 1651328010.1016/j.vetpar.2006.01.035)
Yabsley MJ, Shock BC (2013) Natural history of zoonotic Babesia: role wildlife reservoirs. Int J Parasitol Par Wildl 2:18–31. (PMID: 10.1016/j.ijppaw.2012.11.003)
Zamoto A, Tsuji M, Wei Q, Cho SH, Shin EH, Kim TS, Leonova GN, Hagiwara K, Asakawa M, Kariwa H, Takashima I, Ishihara C (2004) Epizootiologic survey for Babesia microti among small wild mammals in northeastern Eurasia and a geographic diversity in the beta-tubulin gene sequences. J Vet Med Sci 66(7):785–792. (PMID: 1529774910.1292/jvms.66.785)
Zemtsova G, Killmaster LF, Mumcuoglu KY, Levin ML (2010) Co-feeding as a route for transmission of Rickettsia conorii israelensis between Rhipicephalus sanguineus ticks. Exp Appl Acarol 52(4):383–392. (PMID: 2058941610.1007/s10493-010-9375-7)
معلومات مُعتمدة: 2019/15150-4 Fundação de Amparo à Pesquisa do Estado de São Paulo; 2020/12037-0 Fundação de Amparo à Pesquisa do Estado de São Paulo; PE00000007 NextGenerationEU-MUR PNRR Extended Partnership initiative on Emerging Infectious Diseases; 308768/2017-5 Conselho Nacional de Desenvolvimento Científico e Tecnológico; 303701/2021-8 Conselho Nacional de Desenvolvimento Científico e Tecnológico
فهرسة مساهمة: Keywords: Amblyomma dubitatum; Amblyomma sculptum; Babesia sp.; SFG Rickettsia sp.; Tick-borne pathogens; Zoonosis
تواريخ الأحداث: Date Created: 20230308 Date Completed: 20230414 Latest Revision: 20230414
رمز التحديث: 20230414
DOI: 10.1007/s00436-023-07815-5
PMID: 36890298
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-1955
DOI:10.1007/s00436-023-07815-5