دورية أكاديمية

Hyperactive nanobacteria with host-dependent traits pervade Omnitrophota.

التفاصيل البيبلوغرافية
العنوان: Hyperactive nanobacteria with host-dependent traits pervade Omnitrophota.
المؤلفون: Seymour CO; School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA., Palmer M; School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA., Becraft ED; Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA.; Department of Biology, University of North Alabama, Florence, AL, USA., Stepanauskas R; Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA., Friel AD; School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA., Schulz F; DOE Joint Genome Institute, Berkeley, CA, USA.; Lawrence Berkeley National Laboratory, Berkeley, CA, USA., Woyke T; DOE Joint Genome Institute, Berkeley, CA, USA.; Lawrence Berkeley National Laboratory, Berkeley, CA, USA., Eloe-Fadrosh E; DOE Joint Genome Institute, Berkeley, CA, USA.; Lawrence Berkeley National Laboratory, Berkeley, CA, USA., Lai D; School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA., Jiao JY; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China., Hua ZS; Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, People's Republic of China., Liu L; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China., Lian ZH; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China., Li WJ; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China.; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, People's Republic of China., Chuvochina M; Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia., Finley BK; Center for Ecosystem Science and Society (ECOSS), Northern Arizona University, Flagstaff, AZ, USA.; Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA., Koch BJ; Center for Ecosystem Science and Society (ECOSS), Northern Arizona University, Flagstaff, AZ, USA., Schwartz E; Center for Ecosystem Science and Society (ECOSS), Northern Arizona University, Flagstaff, AZ, USA., Dijkstra P; Center for Ecosystem Science and Society (ECOSS), Northern Arizona University, Flagstaff, AZ, USA., Moser DP; School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA.; Division of Hydrologic Sciences, Desert Research Institute, Las Vegas, NV, USA., Hungate BA; Center for Ecosystem Science and Society (ECOSS), Northern Arizona University, Flagstaff, AZ, USA., Hedlund BP; School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA. brian.hedlund@unlv.edu.; Nevada Institute of Personalized Medicine, Las Vegas, NV, USA. brian.hedlund@unlv.edu.
المصدر: Nature microbiology [Nat Microbiol] 2023 Apr; Vol. 8 (4), pp. 727-744. Date of Electronic Publication: 2023 Mar 16.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101674869 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2058-5276 (Electronic) Linking ISSN: 20585276 NLM ISO Abbreviation: Nat Microbiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Publishing Group, [2016]-
مواضيع طبية MeSH: Calcifying Nanoparticles*/metabolism , Microbiota*/genetics, Humans ; Bacteria/metabolism
مستخلص: Candidate bacterial phylum Omnitrophota has not been isolated and is poorly understood. We analysed 72 newly sequenced and 349 existing Omnitrophota genomes representing 6 classes and 276 species, along with Earth Microbiome Project data to evaluate habitat, metabolic traits and lifestyles. We applied fluorescence-activated cell sorting and differential size filtration, and showed that most Omnitrophota are ultra-small (~0.2 μm) cells that are found in water, sediments and soils. Omnitrophota genomes in 6 classes are reduced, but maintain major biosynthetic and energy conservation pathways, including acetogenesis (with or without the Wood-Ljungdahl pathway) and diverse respirations. At least 64% of Omnitrophota genomes encode gene clusters typical of bacterial symbionts, suggesting host-associated lifestyles. We repurposed quantitative stable-isotope probing data from soils dominated by andesite, basalt or granite weathering and identified 3 families with high isotope uptake consistent with obligate bacterial predators. We propose that most Omnitrophota inhabit various ecosystems as predators or parasites.
(© 2023. The Author(s).)
References: Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196 (2007). (PMID: 17947321217533710.1093/nar/gkm864)
Glöckner, J. et al. Phylogenetic diversity and metagenomics of candidate division OP3. Environ. Microbiol. 12, 1218–1229 (2010). (PMID: 2015850710.1111/j.1462-2920.2010.02164.x)
Hugenholtz, P., Pitulle, C., Hershberger, K. L. & Pace, N. R. Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180, 366–376 (1998). (PMID: 944052610689210.1128/JB.180.2.366-376.1998)
Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013). (PMID: 2385139410.1038/nature12352)
Kolinko, S., Richter, M., Glöckner, F.-O., Brachmann, A. & Schüler, D. Single-cell genomics of uncultivated deep-branching magnetotactic bacteria reveals a conserved set of magnetosome genes. Environ. Microbiol. 18, 21–37 (2016). (PMID: 2606002110.1111/1462-2920.12907)
Kizina, J. et al. Methanosaeta and “Candidatus Velamenicoccus archaeovorus”. Appl. Environ. Microbiol. 88, e0240721 (2022).
Williams, T. J., Allen, M. A., Berengut, J. F. & Cavicchioli, R. Shedding light on microbial ‘dark matter’: insights into novel Cloacimonadota and Omnitrophota from an Antarctic lake. Front. Microbiol. 12, 2947 (2021). (PMID: 10.3389/fmicb.2021.741077)
Momper, L., Jungbluth, S. P., Lee, M. D. & Amend, J. P. Energy and carbon metabolisms in a deep terrestrial subsurface fluid microbial community. ISME J. 11, 2319–2333 (2017). (PMID: 28644444560737410.1038/ismej.2017.94)
Suominen, S., Dombrowski, N., Sinninghe Damsté, J. S. & Villanueva, L. A diverse uncultivated microbial community is responsible for organic matter degradation in the Black Sea sulphidic zone. Environ. Microbiol. 23, 2709–2728 (2021). (PMID: 3185866010.1111/1462-2920.14902)
Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).
Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017). (PMID: 28787424643652810.1038/nbt.3893)
Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018). (PMID: 3014850310.1038/nbt.4229)
Na, S.-I. et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J. Microbiol. 56, 280–285 (2018). (PMID: 2949286910.1007/s12275-018-8014-6)
Ankenbrand, M. J. & Keller, A. bcgTree: automatized phylogenetic tree building from bacterial core genomes. Genome 59, 783–791 (2016). (PMID: 2760326510.1139/gen-2015-0175)
Eloe-Fadrosh, E. A. et al. Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs. Nat. Commun. 7, 10476 (2016). (PMID: 26814032473785110.1038/ncomms10476)
Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019). (PMID: 317301927703759)
Rodriguez-R, L. M. & Konstantinidis, K. T. Bypassing cultivation to identify bacterial species: culture-independent genomic approaches identify credibly distinct clusters, avoid cultivation bias, and provide true insights into microbial species. Microbe Mag. 9, 111–118 (2014). (PMID: 10.1128/microbe.9.111.1)
Hedlund, B. P. et al. SeqCode: a nomenclatural code for prokaryotes described from sequence data. Nat. Microbiol. 7, 1702–1708 (2022). (PMID: 361234429519449)
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019). (PMID: 31341288701518010.1038/s41587-019-0209-9)
Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017). (PMID: 29088705619267810.1038/nature24621)
Proctor, C. R. et al. Phylogenetic clustering of small low nucleic acid-content bacteria across diverse freshwater ecosystems. ISME J. 12, 1344–1359 (2018). (PMID: 29416124593201710.1038/s41396-018-0070-8)
Beam, J. P. et al. Ancestral absence of electron transport chains in Patescibacteria and DPANN. Front. Microbiol. 11, 1848 (2020). (PMID: 33013724750711310.3389/fmicb.2020.01848)
Kempes, C. P., Wang, L., Amend, J. P., Doyle, J. & Hoehler, T. Evolutionary tradeoffs in cellular composition across diverse bacteria. ISME J. 10, 2145–2157 (2016). (PMID: 27046336498931210.1038/ismej.2016.21)
Dittrich, C. R., Bennett, G. N. & San, K.-Y. Characterization of the acetate-producing pathways in Escherichia coli. Biotechnol. Prog. 21, 1062–1067 (2005). (PMID: 1608068410.1021/bp050073s)
Westphal, L., Wiechmann, A., Baker, J., Minton, N. P. & Müller, V. The Rnf complex is an energy-coupled transhydrogenase essential to reversibly link cellular NADH and ferredoxin pools in the acetogen Acetobacterium woodii. J. Bacteriol. 200, e00357-18 (2018). (PMID: 30126940618224110.1128/JB.00357-18)
Kuhns, M., Trifunović, D., Huber, H. & Müller, V. The Rnf complex is a Na + coupled respiratory enzyme in a fermenting bacterium, Thermotoga maritima. Commun. Biol. 3, 431 (2020).
Hesslinger, C., Fairhurst, S. A. & Sawers, G. Novel keto acid formate-lyase and propionate kinase enzymes are components of an anaerobic pathway in Escherichia coli that degrades L-threonine to propionate. Mol. Microbiol. 27, 477–492 (1998). (PMID: 948490110.1046/j.1365-2958.1998.00696.x)
Tang, Y.-Q., Shigematsu, T., Morimura, S. & Kida, K. Effect of dilution rate on the microbial structure of a mesophilic butyrate-degrading methanogenic community during continuous cultivation. Appl. Microbiol. Biotechnol. 75, 451–465 (2007). (PMID: 1722119110.1007/s00253-006-0819-2)
Steuber, J. & Kroneck, P. M. H. Desulfoviridin, the dissimilatory sulfite reductase from Desulfovibrio desulfuricans (Essex): new structural and functional aspects of the membranous enzyme. Inorg. Chim. Acta 275–276, 52–57 (1998). (PMID: 10.1016/S0020-1693(97)06143-4)
Garber, A. I. et al. FeGenie: a comprehensive tool for the identification of iron genes and iron gene neighborhoods in genome and metagenome assemblies. Front. Microbiol. 11, 00037 (2020). (PMID: 10.3389/fmicb.2020.00037)
Walker, D. J. et al. Electrically conductive pili from pilin genes of phylogenetically diverse microorganisms. ISME J. 12, 48–58 (2018). (PMID: 2887263110.1038/ismej.2017.141)
McGlynn, S. E., Chadwick, G. L., Kempes, C. P. & Orphan, V. J. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526, 531–535 (2015). (PMID: 2637500910.1038/nature15512)
Avidan, O. et al. Identification and characterization of differentially-regulated type IVb pilin genes necessary for predation in obligate bacterial predators. Sci. Rep. 7, 1013 (2017). (PMID: 28432347543080110.1038/s41598-017-00951-w)
Pasternak, Z. et al. In and out: an analysis of epibiotic vs periplasmic bacterial predators. ISME J. 8, 625–635 (2014). (PMID: 2408862810.1038/ismej.2013.164)
Tulum, I., Kimura, K. & Miyata, M. Identification and sequence analyses of the gliding machinery proteins from Mycoplasma mobile. Sci. Rep. 10, 3792 (2020). (PMID: 32123220705221110.1038/s41598-020-60535-z)
Kindaichi, T. et al. Phylogenetic diversity and ecophysiology of Candidate phylum Saccharibacteria in activated sludge. FEMS Microbiol. Ecol. 92, flw078 (2016). (PMID: 10.1093/femsec/fiw078)
Miller, I. J., Weyna, T. R., Fong, S. S., Lim-Fong, G. E. & Kwan, J. C. Single sample resolution of rare microbial dark matter in a marine invertebrate metagenome. Sci. Rep. 6, 34362 (2016). (PMID: 27681823504113210.1038/srep34362)
Moreira, D., Zivanovic, Y., López-Archilla, A. I., Iniesto, M. & López-García, P. Reductive evolution and unique predatory mode in the CPR bacterium Vampirococcus lugosii. Nat. Commun. 12, 2454 (2021). (PMID: 33911080808083010.1038/s41467-021-22762-4)
Hamm, J. N. et al. Unexpected host dependency of Antarctic Nanohaloarchaeota. Proc. Natl Acad. Sci. USA 116, 14661–14670 (2019). (PMID: 31253704664234910.1073/pnas.1905179116)
Liu, Z. et al. Genomic analysis reveals key aspects of prokaryotic symbiosis in the phototrophic consortium ‘Chlorochromatium aggregatum’. Genome Biol. 14, R127 (2013). (PMID: 24267588405397210.1186/gb-2013-14-11-r127)
Sakka, M., Kunitake, E., Kimura, T. & Sakka, K. Function of a laminin_G_3 module as a carbohydrate-binding module in an arabinofuranosidase from Ruminiclostridium josui. FEBS Lett. 593, 42–51 (2019). (PMID: 3040328910.1002/1873-3468.13283)
Peer, A., Smith, S. P., Bayer, E. A., Lamed, R. & Borovok, I. Noncellulosomal cohesin- and dockerin-like modules in the three domains of life. FEMS Microbiol. Lett. 291, 1–16 (2009). (PMID: 1902556810.1111/j.1574-6968.2008.01420.x)
Schmitz-Esser, S. et al. ATP/ADP translocases: a common feature of obligate intracellular amoebal symbionts related to chlamydiae and rickettsiae. J. Bacteriol. 186, 683–691 (2004). (PMID: 1472969332150210.1128/JB.186.3.683-691.2004)
van Tol, H. M., Amin, S. A. & Armbrust, E. V. Ubiquitous marine bacterium inhibits diatom cell division. ISME J. 11, 31–42 (2017). (PMID: 2762333210.1038/ismej.2016.112)
Pagnier, I. et al. Babela massiliensis, a representative of a widespread bacterial phylum with unusual adaptations to parasitism in amoebae. Biol. Direct 10, 13 (2015).
Yeoh, Y. K., Sekiguchi, Y., Parks, D. H. & Hugenholtz, P. Comparative genomics of candidate phylum TM6 suggests that parasitism is widespread and ancestral in this lineage. Mol. Biol. Evol. 33, 915–927 (2016).
Paul, B. G. et al. Retroelement-guided protein diversification abounds in vast lineages of Bacteria and Archaea. Nat. Microbiol. 2, 17045 (2017). (PMID: 28368387543692610.1038/nmicrobiol.2017.45)
Hungate, B. A. et al. The functional significance of bacterial predators. mBio 12, e00466-21 (2021). (PMID: 33906922809224410.1128/mBio.00466-21)
Castelle, C. J. et al. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat. Rev. Microbiol. 16, 629–645 (2018). (PMID: 3018166310.1038/s41579-018-0076-2)
Jarett, J. K. et al. Single-cell genomics of co-sorted Nanoarchaeota suggests novel putative host associations and diversification of proteins involved in symbiosis. Microbiome 6, 161 (2018).
Munson-McGee, J. H. et al. Nanoarchaeota, their Sulfolobales host, and Nanoarchaeota virus distribution across Yellowstone National Park Hot Springs. Appl. Environ. Microbiol. 81, 7860–7868 (2015). (PMID: 26341207461695010.1128/AEM.01539-15)
Cross, K. L. et al. Targeted isolation and cultivation of uncultivated bacteria by reverse genomics. Nat. Biotechnol. 37, 1314–1321 (2019). (PMID: 31570900685854410.1038/s41587-019-0260-6)
He, X. et al. Cultivation of a human-associated TM7 phylotype reveals a reduced genome and epibiotic parasitic lifestyle. Proc. Natl Acad. Sci. USA 112, 244–249 (2015). (PMID: 2553539010.1073/pnas.1419038112)
Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017). (PMID: 28298430541177710.1101/gr.213959.116)
Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019). (PMID: 31388474666256710.7717/peerj.7359)
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015). (PMID: 25977477448438710.1101/gr.186072.114)
BBTools. DOE Joint Genome Institute (1 June 2021); https://jgi.doe.gov/data-and-tools/bbtools/.
Li, H. BFC: correcting Illumina sequencing errors. Bioinformatics 31, 2885–2887 (2015). (PMID: 25953801463565610.1093/bioinformatics/btv290)
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012). (PMID: 22506599334251910.1089/cmb.2012.0021)
Wu, Y.-W., Tang, Y.-H., Tringe, S. G., Simmons, B. A. & Singer, S. W. MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome 2, 26 (2014). (PMID: 25136443412943410.1186/2049-2618-2-26)
Wu, Y.-W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016). (PMID: 2651582010.1093/bioinformatics/btv638)
Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015). (PMID: 26336640455615810.7717/peerj.1165)
Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014). (PMID: 2521818010.1038/nmeth.3103)
Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018). (PMID: 29807988678697110.1038/s41564-018-0171-1)
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010). (PMID: 20211023284864810.1186/1471-2105-11-119)
Stepanauskas, R. et al. Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nat. Commun. 8, 84 (2017). (PMID: 28729688551954110.1038/s41467-017-00128-z)
Woyke, T. et al. Assembling the marine metagenome, one cell at a time. PLoS ONE 4, e5299 (2009). (PMID: 19390573266875610.1371/journal.pone.0005299)
Bushnell, B. Tadpole. GitHub https://github.com/bbushnell/tadpole (2016).
Nurk, S. et al. in Research in Computational Molecular Biology (eds Deng, M. et al.) 158–170 (Springer, 2013).
Chen, I.-M. A. et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 47, D666–D677 (2019). (PMID: 3028952810.1093/nar/gky901)
Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics 11, 538 (2010). (PMID: 21034504309809010.1186/1471-2105-11-538)
Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011). (PMID: 22039361319763410.1371/journal.pcbi.1002195)
Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009). (PMID: 19505945271234410.1093/bioinformatics/btp348)
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015). (PMID: 2537143010.1093/molbev/msu300)
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013). (PMID: 23329690360331810.1093/molbev/mst010)
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Haeseler, Avon & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017). (PMID: 28481363545324510.1038/nmeth.4285)
Minh, B. Q., Nguyen, M. A. T. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013). (PMID: 23418397367074110.1093/molbev/mst024)
Barbera, P. et al. EPA-ng: massively parallel evolutionary placement of genetic sequences. Syst. Biol. 68, 365–369 (2019). (PMID: 3016568910.1093/sysbio/syy054)
Rodriguez-R, L. M. & Konstantinidis, K. T. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. Preprint at http://enve-omics.ce.gatech.edu/enveomics/ (2016).
Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.-Y. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017). (PMID: 10.1111/2041-210X.12628)
Aramaki, T. et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2019).
Abby, S. S. et al. Identification of protein secretion systems in bacterial genomes. Sci. Rep. 6, 23080 (2016). (PMID: 26979785479323010.1038/srep23080)
Zhou, Z., Tran, P., Liu, Y., Kieft, K. & Anantharaman, K. METABOLIC: A scalable high-throughput metabolic and biogeochemical functional trait profiler based on microbial genomes. Microbiome 10, 33 (2022).
Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001). (PMID: 1115261310.1006/jmbi.2000.4315)
Søndergaard, D., Pedersen, C. N. S. & Greening, C. HydDB: a web tool for hydrogenase classification and analysis. Sci. Rep. 6, 34212 (2016). (PMID: 27670643503745410.1038/srep34212)
Bray, M. S. et al. Phylogenetic and structural diversity of aromatically dense pili from environmental metagenomes. Environ. Microbiol. Rep. 12, 49–57 (2020). (PMID: 3170164110.1111/1758-2229.12809)
Bengtsson-Palme, J. et al. METAXA2: improved identification and taxonomic classification of small and large subunit rRNA in metagenomic data. Mol. Ecol. Resour. 15, 1403–1414 (2015). (PMID: 2573260510.1111/1755-0998.12399)
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009). (PMID: 20003500280385710.1186/1471-2105-10-421)
Chan, P. P. & Lowe, T. M. tRNAscan-SE: searching for tRNA genes in genomic sequences. Methods Mol. Biol. 1962, 1–14 (2019). (PMID: 31020551676840910.1007/978-1-4939-9173-0_1)
Kalvari, I. et al. Rfam 14: expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Res. 49, D192–D200 (2021). (PMID: 3321186910.1093/nar/gkaa1047)
Nawrocki, E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933–2935 (2013). (PMID: 24008419381085410.1093/bioinformatics/btt509)
Guerrero, R. et al. Predatory prokaryotes: predation and primary consumption evolved in bacteria. Proc. Natl Acad. Sci. USA 83, 2138–2142 (1986). (PMID: 1154207332324610.1073/pnas.83.7.2138)
Roskov, Y. et al. (eds) Catalogue of Life (Species 2000, ITIS, GBIF, 25 March 2019); www.catalogueoflife.org/col.
Federhen, S. The NCBI Taxonomy database. Nucleic Acids Res. 40, D136–D143 (2012). (PMID: 2213991010.1093/nar/gkr1178)
Rees, T., Vandepitte, L., Vanhoorne, B. & Decock, W. All genera of the world: an overview and estimates based on the March 2020 release of the Interim Register of Marine and Nonmarine Genera (IRMNG). Megataxa 1, 123–140 (2020). (PMID: 10.11646/megataxa.1.2.3)
Oren, A., Garrity, G. M., Parker, C. T., Chuvochina, M. & Trujillo, M. E. Lists of names of prokaryotic Candidatus taxa. Int. J. Syst. Evol. Microbiol. 70, 3956–4042 (2020). (PMID: 3260328910.1099/ijsem.0.003789)
Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016). (PMID: 27781170507569710.7717/peerj.2584)
Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009). (PMID: 19801464278641910.1128/AEM.01541-09)
Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).
Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2011). (PMID: 2053443210.1073/pnas.1000080107)
Robeson, M. S. et al. RESCRIPt: reproducible sequence taxonomy reference database management for the masses. QIIME 2 https://docs.qiime2.org/2022.11/data-resources/ (2020).
Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015). (PMID: 10.3354/ame01753)
Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016). (PMID: 2627176010.1111/1462-2920.13023)
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012). (PMID: 23060610351614210.1093/bioinformatics/bts565)
Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).
Nanopore GridION and PromethION mock microbial community data community release. GitHub https://github.com/LomanLab/mockcommunity (2022).
Finley, B. K. et al. Soil minerals affect taxon-specific bacterial growth. ISME J. 16, 1318–1326 (2022). (PMID: 3493102810.1038/s41396-021-01162-y)
Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 13219 (2016). (PMID: 27774985507906010.1038/ncomms13219)
Hug, L. A. et al. Aquifer environment selects for microbial species cohorts in sediment and groundwater. ISME J. 9, 1846–1856 (2015). (PMID: 25647349451194110.1038/ismej.2015.2)
Probst, A. J. et al. Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface. Nat. Microbiol. 3, 328–336 (2018). (PMID: 29379208679243610.1038/s41564-017-0098-y)
معلومات مُعتمدة: 1826734 National Science Foundation (NSF); 1928924 National Science Foundation (NSF); 1516679 National Science Foundation (NSF)
المشرفين على المادة: 0 (Calcifying Nanoparticles)
تواريخ الأحداث: Date Created: 20230317 Date Completed: 20230404 Latest Revision: 20230416
رمز التحديث: 20230417
مُعرف محوري في PubMed: PMC10066038
DOI: 10.1038/s41564-022-01319-1
PMID: 36928026
قاعدة البيانات: MEDLINE