دورية أكاديمية

Novel benzimidazole-linked (thio)barbiturates as non-hydroxamate HDAC6 inhibitors targeting leukemia: Design, synthesis, and structure-activity relationship.

التفاصيل البيبلوغرافية
العنوان: Novel benzimidazole-linked (thio)barbiturates as non-hydroxamate HDAC6 inhibitors targeting leukemia: Design, synthesis, and structure-activity relationship.
المؤلفون: Mansour RE; Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt., Abdulwahab HG; Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt., El-Sehrawi HM; Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
المصدر: Archiv der Pharmazie [Arch Pharm (Weinheim)] 2023 Jun; Vol. 356 (6), pp. e2200433. Date of Electronic Publication: 2023 Mar 21.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Verlag GmbH & Co. KGaA Country of Publication: Germany NLM ID: 0330167 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-4184 (Electronic) Linking ISSN: 03656233 NLM ISO Abbreviation: Arch Pharm (Weinheim) Subsets: MEDLINE
أسماء مطبوعة: Publication: <2005->: Weinheim Germany : Wiley-VCH Verlag GmbH & Co. KGaA
Original Publication: Weinheim, Verlag Chemie GmbH.
مواضيع طبية MeSH: Antineoplastic Agents*/chemistry , Leukemia*, Humans ; Structure-Activity Relationship ; Molecular Docking Simulation ; Histone Deacetylase Inhibitors ; Cell Line, Tumor ; Hydroxamic Acids/pharmacology ; Vorinostat/pharmacology ; Barbiturates/pharmacology ; Benzimidazoles/pharmacology ; Drug Design ; Cell Proliferation ; Drug Screening Assays, Antitumor ; Histone Deacetylase 6
مستخلص: Based on the well-established pharmacophoric features required for histone deacetylase (HDAC) inhibition, novel easy-to-prepare benzimidazole-linked (thio)barbiturate derivatives were designed and synthesized as HDAC6 inhibitors. The proposed structures of the title compounds were confirmed based on their spectral data and elemental analyses. The newly synthesized compounds were screened in vitro against HDAC6. All tested compounds showed potent HDAC6 inhibition at the nanomolar level. Several compounds displayed a remarkable HDAC6 inhibitory activity (IC 50  = 48.85-75.62 nM), superior to that of the reference drug suberoylanilide hydroxamic acid (SAHA; IC 50  = 91.73 nM). The most potent derivatives were further assessed for their in vitro anticancer activity against two human leukemia cell lines. Thiobarbiturate 3e was two times more potent than SAHA against the tested cells. The detailed structure-activity relationship was also described. Furthermore, molecular docking simulation revealed the ability of the title compounds to chelate the catalytic Zn +2 ion located within the binding pocket of HDAC6. In silico evaluation of physicochemical properties indicated that the target compounds are promising candidates in terms of pharmacokinetic aspects.
(© 2023 Deutsche Pharmazeutische Gesellschaft.)
References: Y. Zhang, J. Zheng, Molecules 2020, 25, 3366. https://doi.org/10.3390/molecules25153366.
X. Ma, H. H. Ezzeldin, R. B. Diasio, Drugs 2009, 69, 1911. https://doi.org/10.2165/11315680-000000000-00000.
G. Cavalli, E. Heard, Nature 2019, 571, 489. https://doi.org/10.1038/s41586-019-1411-0.
K. J. Falkenberg, R. W. Johnstone, Nat. Rev. Drug Discov. 2014, 13, 673. https://doi.org/10.1038/nrd4360.
M. A. Dawson, T. Kouzarides, Cell 2012, 150, 12. https://doi.org/10.1016/j.cell.2012.06.013.
B. Ell, Y. Kang, Trends Cell Biol. 2013, 23, 603. https://doi.org/10.1016/j.tcb.2013.06.001.
Y. Imai, Y. Maru, J. Tanaka, Cancer Sci. 2016, 107, 1543. https://doi.org/10.1111/cas.13062.
T. Li, C. Zhang, S. Hassan, X. Liu, F. Song, K. Chen, J. Yang, J. Hematol. Oncol. 2018, 11, 111. https://doi.org/10.1186/s13045-018-0654-9.
P. A. Marks, W. S. Xu, J. Cell. Biochem. 2009, 107, 600. https://doi.org/10.1002/jcb.22185.
J. Roche, P. Bertrand, Eur. J. Med. Chem. 2016, 121, 451. https://doi.org/10.1016/j.ejmech.2016.05.047.
M. Cosenza, S. Pozzi, Int. J. Mol. Sci. 2018, 19, 2337. https://doi.org/10.3390/ijms19082337.
S. Pulya, S. A. Amin, N. Adhikari, S. Biswas, T. Jha, B. Ghosh, Pharmacol. Res. 2021, 163, 105274. https://doi.org/10.1016/j.phrs.2020.105274.
L. Zhang, J. Zhang, Q. Jiang, L. Zhang, W. Song, J. Enzyme Inhib. Med. Chem. 2018, 33, 714. https://doi.org/10.1080/14756366.2017.1417274.
T. Suzuki, N. Miyata, Curr. Med. Chem. 2005, 12, 2867. https://doi.org/10.2174/092986705774454706.
S. Tahlan, S. Kumar, S. Kakkar, B. Narasimhan, BMC Chem. 2019, 13, 66. https://doi.org/10.1186/s13065-019-0579-6.
N. Shrivastava, M. J. Naim, M. J. Alam, F. Nawaz, S. Ahmed, O. Alam, Arch. Pharm. (Weinheim, Ger.) 2017, 350, e201700040. https://doi.org/10.1002/ardp.201700040.
Y. K. Yoon, M. A. Ali, A. C. Wei, T. S. Choon, H. Osman, K. Parang, A. N. Shirazi, Bioorg. Med. Chem. 2014, 22, 703. https://doi.org/10.1016/j.bmc.2013.12.029.
H. Wang, N. Yu, H. Song, D. Chen, Y. Zou, W. Deng, P. L. Lye, J. Chang, M. Ng, E. T. Sun, K. Sangthongpitag, X. Wang, X. Wu, H. H. Khng, L. Fang, S. K. Goh, W. C. Ong, Z. Bonday, W. Stünkel, A. Poulsen, M. Entzeroth, Bioorg. Med. Chem. Lett. 2009, 19, 1403. https://doi.org/10.1016/j.bmcl.2009.01.041.
T. Wang, M. Sepulveda, P. Gonzales, S. Gately, Bioorg. Med. Chem. Lett. 2013, 23, 4790. https://doi.org/10.1016/j.bmcl.2013.07.001.
D. Abed Bakhotmah, Am. J. Heterocycl. Chem. 2019, 5, 76.
H. G. Abdulwahab, M. F. Harras, N. G. El Menofy, A. M. Hegab, B. M. Essa, A. A. Selim, T. M. Sakr, H. El-Zahabi, Bioorg. Med. Chem. 2020, 28, 115759. https://doi.org/10.1016/j.bmc.2020.115759.
T. Kolev, R. Bakalska, R. W. Seidel, H. Mayer-Figge, I. M. Oppel, M. Spiteller, W. S. Sheldrick, B. B. Koleva, Tetrahedron: Asymmetry 2009, 20, 327. https://doi.org/10.1016/j.tetasy.2009.02.005.
M. Cascella, J. Anesth. Hist. 2021, 7, 11. https://doi.org/10.1016/j.janh.2020.12.007.
K. T. Mahmudov, M. N. Kopylovich, A. M. Maharramov, M. M. Kurbanova, A. V. Gurbanov, A. J. L. Pombeiro, Coord. Chem. Rev. 2014, 265, 1. https://doi.org/10.1016/j.ccr.2014.01.002.
S. H. Kim, A. T. Pudzianowski, K. J. Leavitt, J. Barbosa, P. A. McDonnell, W. J. Metzler, B. M. Rankin, R. Liu, W. Vaccaro, W. Pitts, Bioorg. Med. Chem. Lett. 2005, 15, 1101. https://doi.org/10.1016/j.bmcl.2004.12.016.
M. K. Haldar, M. D. Scott, N. Sule, D. K. Srivastava, S. Mallik, Bioorg. Med. Chem. Lett. 2008, 18, 2373. https://doi.org/10.1016/j.bmcl.2008.02.066.
Q. Yan, R. Cao, W. Yi, Z. Chen, H. Wen, L. Ma, H. Song, Eur. J. Med. Chem. 2009, 44, 4235. https://doi.org/10.1016/j.ejmech.2009.05.023.
M. Tramontini, L. Angiolini, Tetrahedron 1990, 46, 1791. https://doi.org/10.1016/s0040-4020(01)89752-0.
Ł. Popiołek, J. Rzymowska, U. Kosikowska, A. Hordyjewska, M. Wujec, A. Malm, J. Enzyme Inhib. Med. Chem. 2014, 29, 786. https://doi.org/10.3109/14756366.2013.855926.
D. O. Ozgun, C. Yamali, H. I. Gul, P. Taslimi, I. Gulcin, T. Yanik, C. T. Supuran, J. Enzyme Inhib. Med. Chem. 2016, 31, 1498. https://doi.org/10.3109/14756366.2016.1149479.
H. K. Mahmoud, T. A. Farghaly, H. G. Abdulwahab, N. T. Al-Qurashi, M. R. Shaaban, Eur. J. Med. Chem. 2020, 208, 112752. https://doi.org/10.1016/j.ejmech.2020.112752.
R. V. Patel, P. K. Patel, P. Kumari, D. P. Rajani, K. H. Chikhalia, Eur. J. Med. Chem. 2012, 53, 41. https://doi.org/10.1016/j.ejmech.2012.03.033.
B. S. Mann, J. R. Johnson, M. H. Cohen, R. Justice, R. Pazdur, Oncologist 2007, 12(10), 1247. https://doi.org/10.1634/theoncologist.12-10-1247.
T. Mosmann, J. Immunol. Methods 1983, 65(1-2), 55. https://doi.org/10.1016/0022-1759(83)90303-4.
S. A. Al-Hussain, T. A. Farghaly, M. E. A. Zaki, H. G. Abdulwahab, N. T. Al-Qurashi, Z. A. Muhammad, Bioorg. Chem. 2020, 105, 104330. https://doi.org/10.1016/j.bioorg.2020.104330.
Y. Hai, D. W. Christianson, Nat. Chem. Biol. 2016, 12, 741. https://doi.org/10.1038/nchembio.2134.
A. Daina, O. Michielin, V. Zoete, Sci. Rep. 2017, 7, 42717. https://doi.org/10.1038/srep42717.
V. H. Shah, N. A. Chauhan, A. R. Parikh, J. Indian Chem. Soc. 1987, 64, 678.
R. A. Rodríguez-Fonseca, Y. Sixto-López, M. J. Fragoso-Vázquez, R. Flores-Mejía, L. C. Cabrera-Pérez, I. Vázquez-Moctezuma, M. C. Rosales-Hernández, M. Bello, M. Martínez-Archundia, J. G. Trujillo-Ferrara, E. Becerra-Martínez, J. Correa-Basurto, Anti-Cancer Agents Med. Chem. 2017, 17, 1441. https://doi.org/10.2174/1871520617666170103092851.
M. M. F. Ismail, H. G. Abdulwahab, E. S. Nossier, N. G. El Menofy, B. A. Abdelkhalek, Bioorg. Chem. 2020, 94, 103437. https://doi.org/10.1016/j.bioorg.2019.103437.
فهرسة مساهمة: Keywords: (thio)barbituric acid; HDAC6 inhibitor; benzimidazole; cytotoxicity; leukemia
المشرفين على المادة: 0 (Antineoplastic Agents)
0 (Histone Deacetylase Inhibitors)
0 (Hydroxamic Acids)
58IFB293JI (Vorinostat)
0 (Barbiturates)
0 (Benzimidazoles)
EC 3.5.1.98 (HDAC6 protein, human)
EC 3.5.1.98 (Histone Deacetylase 6)
تواريخ الأحداث: Date Created: 20230321 Date Completed: 20230605 Latest Revision: 20230605
رمز التحديث: 20231215
DOI: 10.1002/ardp.202200433
PMID: 36942938
قاعدة البيانات: MEDLINE
الوصف
تدمد:1521-4184
DOI:10.1002/ardp.202200433