دورية أكاديمية

Disruption of the Rab7-Dependent Final Common Pathway of Endosomal and Autophagic Processing Results in a Severe Podocytopathy.

التفاصيل البيبلوغرافية
العنوان: Disruption of the Rab7-Dependent Final Common Pathway of Endosomal and Autophagic Processing Results in a Severe Podocytopathy.
المؤلفون: Vöing K; Department of Internal Medicine and Nephrology, University Hospital of Münster, Medical Clinic D, Munster, Germany., Michgehl U; Department of Internal Medicine and Nephrology, University Hospital of Münster, Medical Clinic D, Munster, Germany., Mertens ND; Department of Internal Medicine and Nephrology, University Hospital of Münster, Medical Clinic D, Munster, Germany., Picciotto C; Department of Internal Medicine and Nephrology, University Hospital of Münster, Medical Clinic D, Munster, Germany., Maywald ML; Department of Internal Medicine and Nephrology, University Hospital of Münster, Medical Clinic D, Munster, Germany., Goretzko J; Research Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany., Waimann S; Department of Internal Medicine and Nephrology, University Hospital of Münster, Medical Clinic D, Munster, Germany., Gilhaus K; Department of Internal Medicine and Nephrology, University Hospital of Münster, Medical Clinic D, Munster, Germany., Rogg M; Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany.; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany., Schell C; Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany.; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany., Klingauf J; Institute of Medical Physics and Biophysics, University of Muenster, Muenster, Germany., Tsytsyura Y; Institute of Medical Physics and Biophysics, University of Muenster, Muenster, Germany., Hansen U; Institute for Musculoskeletal Medicine (IMM), University of Muenster, Muenster, Germany., van Marck V; Department of Pathology, University Hospital Muenster Muenster, Germany., Edinger AL; Department of Developmental & Cell Biology, University of California, Irvine, California., Vollenbröker B; Department of Internal Medicine and Nephrology, University Hospital of Münster, Medical Clinic D, Munster, Germany., Rescher U; Research Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany., Braun DA; Department of Internal Medicine and Nephrology, University Hospital of Münster, Medical Clinic D, Munster, Germany., George B; Department of Internal Medicine and Nephrology, University Hospital of Münster, Medical Clinic D, Munster, Germany., Weide T; Department of Internal Medicine and Nephrology, University Hospital of Münster, Medical Clinic D, Munster, Germany., Pavenstädt H; Department of Internal Medicine and Nephrology, University Hospital of Münster, Medical Clinic D, Munster, Germany.
المصدر: Journal of the American Society of Nephrology : JASN [J Am Soc Nephrol] 2023 Jul 01; Vol. 34 (7), pp. 1191-1206. Date of Electronic Publication: 2023 Apr 05.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wolters Kluwer Health, on behalf of the American Society of Nephrology Country of Publication: United States NLM ID: 9013836 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1533-3450 (Electronic) Linking ISSN: 10466673 NLM ISO Abbreviation: J Am Soc Nephrol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2023- : Hagerstown, MD : Wolters Kluwer Health, on behalf of the American Society of Nephrology
Original Publication: Baltimore, MD : Williams & Wilkins, c1990-
مواضيع طبية MeSH: Kidney Glomerulus*/pathology , Podocytes*/metabolism, Animals ; Mice ; Humans ; Endosomes ; Drosophila ; Kidney ; Mammals
مستخلص: Significance Statement: Endocytosis, recycling, and degradation of proteins are essential functions of mammalian cells, especially for terminally differentiated cells with limited regeneration rates and complex morphology, such as podocytes. To improve our understanding on how disturbances of these trafficking pathways are linked to podocyte depletion and slit diaphragm (SD) injury, the authors explored the role of the small GTPase Rab7, which is linked to endosomal, lysosomal, and autophagic pathways, using as model systems mice and Drosophila with podocyte-specific or nephrocyte-specific loss of Rab7, and a human podocyte cell line depleted for Rab7. Their findings point to maturation and fusion events during endolysosomal and autophagic maturation as key processes for podocyte homeostasis and function and identify altered lysosomal pH values as a putative novel mechanism for podocytopathies.
Background: Endocytosis, recycling, and degradation of proteins are essential functions of mammalian cells, especially for terminally differentiated cells with limited regeneration rates, such as podocytes. How disturbances within these trafficking pathways may act as factors in proteinuric glomerular diseases is poorly understood.
Methods: To explore how disturbances in trafficking pathways may act as factors in proteinuric glomerular diseases, we focused on Rab7, a highly conserved GTPase that controls the homeostasis of late endolysosomal and autophagic processes. We generated mouse and Drosophila in vivo models lacking Rab7 exclusively in podocytes or nephrocytes, and performed histologic and ultrastructural analyses. To further investigate Rab7 function on lysosomal and autophagic structures, we used immortalized human cell lines depleted for Rab7.
Results: Depletion of Rab7 in mice, Drosophila , and immortalized human cell lines resulted in an accumulation of diverse vesicular structures resembling multivesicular bodies, autophagosomes, and autoendolysosomes. Mice lacking Rab7 developed a severe and lethal renal phenotype with early-onset proteinuria and global or focal segmental glomerulosclerosis, accompanied by an altered distribution of slit diaphragm proteins. Remarkably, structures resembling multivesicular bodies began forming within 2 weeks after birth, prior to the glomerular injuries. In Drosophila nephrocytes, Rab7 knockdown resulted in the accumulation of vesicles and reduced slit diaphragms. In vitro , Rab7 knockout led to similar enlarged vesicles and altered lysosomal pH values, accompanied by an accumulation of lysosomal marker proteins.
Conclusions: Disruption within the final common pathway of endocytic and autophagic processes may be a novel and insufficiently understood mechanism regulating podocyte health and disease.
(Copyright © 2023 by the American Society of Nephrology.)
References: Pavenstädt H, Kriz W, Kretzler M. Cell biology of the glomerular podocyte. Physiol Rev. 2003;83(1):253–307. doi: 10.1152/physrev.00020.2002. (PMID: 10.1152/physrev.00020.2002)
Artelt N, Siegerist F, Ritter AM, Grisk O, Schlüter R, Endlich K. Comparative analysis of podocyte foot process morphology in three species by 3D super-resolution microscopy. Front Med (Lausanne). 2018;5:292–298. doi: 10.3389/fmed.2018.00292. (PMID: 10.3389/fmed.2018.00292)
Menon MC, Chuang PY, He CJ. The glomerular filtration barrier: Components and crosstalk. Int J Nephrol. 2012;2012:1–9. doi: 10.1155/2012/749010. (PMID: 10.1155/2012/749010)
Scott RP, Quaggin SE. The cell biology of renal filtration. J Cell Biol. 2015;209(2):199–210. doi: 10.1083/jcb.201410017. (PMID: 10.1083/jcb.201410017)
Kim YH, Goyal M, Kurnit D, Wharram B, Wiggins J, Holzman L. Podocyte depletion and glomerulosclerosis have a direct relationship in the PAN-treated rat. Kidney Int. 2001;60(3):957–968. doi: 10.1046/j.1523-1755.2001.060003957.x. (PMID: 10.1046/j.1523-1755.2001.060003957.x)
Wiggins RC. The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int. 2007;71(12):1205–1214. doi: 10.1038/sj.ki.5002222. (PMID: 10.1038/sj.ki.5002222)
Mundel P, Shankland SJ. Podocyte biology and response to injury. J Am Soc Nephrol. 2002;13(12):3005–3015. doi: 10.1097/01.ASN.0000039661.06947.fd. (PMID: 10.1097/01.ASN.0000039661.06947.fd)
Soda K, Balkin DM, Ferguson SM, Paradise S, Milosevic I, Giovedi S. Role of dynamin, synaptojanin, and endophilin in podocyte foot processes. J Clin Invest. 2012;122(12):4401–4411. doi: 10.1172/jci65289. (PMID: 10.1172/jci65289)
Bechtel W, Helmstädter M, Balica J, Hartleben B, Kiefer B, Hrnjic F. Vps34 deficiency reveals the importance of endocytosis for podocyte homeostasis. J Am Soc Nephrol. 2013;24(5):727–743. doi: 10.1681/ASN.2012070700. (PMID: 10.1681/ASN.2012070700)
Chen J, Chen MX, Fogo AB, Harris RC, Chen JK. mVps34 deletion in podocytes causes glomerulosclerosis by disrupting intracellular vesicle trafficking. J Am Soc Nephrol. 2013;24(2):198–207. doi: 10.1681/ASN.2012010101. (PMID: 10.1681/ASN.2012010101)
Hermle T, Schneider R, Schapiro D, Braun DA, Van Der Ven AT, Warejko JK. GAPVD1 and ANKFY1 mutations implicate RAB5 regulation in nephrotic syndrome. J Am Soc Nephrol. 2018;29(8):2123–2138. doi: 10.1681/ASN.2017121312. (PMID: 10.1681/ASN.2017121312)
Dorval G, Kuzmuk V, Gribouval O, Welsh GI, Bierzynska A, Schmitt A. TBC1D8B loss-of-function mutations lead to X-linked nephrotic syndrome via defective trafficking pathways. Am J Hum Genet. 2019;104(2):348–355. doi: 10.1016/j.ajhg.2018.12.016. (PMID: 10.1016/j.ajhg.2018.12.016)
Bork T, Liang W, Yamahara K, Lee P, Tian Z, Liu S. Podocytes maintain high basal levels of autophagy independent of mtor signaling. Autophagy. 2020;16(11):1932–1948. doi: 10.1080/15548627.2019.1705007. (PMID: 10.1080/15548627.2019.1705007)
Liang W, Yamahara K, Hernando-Erhard C, Lagies S, Wanner N, Liang H. A reciprocal regulation of spermidine and autophagy in podocytes maintains the filtration barrier. Kidney Int. 2020;98(6):1434–1448. doi: 10.1016/j.kint.2020.06.016. (PMID: 10.1016/j.kint.2020.06.016)
Hartleben B, Gödel M, Meyer-Schwesinger C, Liu S, Ulrich T, Köbler S. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest. 2010;120(4):1084–1096. doi: 10.1172/jci39492. (PMID: 10.1172/jci39492)
Weide T, Huber TB. Implications of autophagy for glomerular aging and disease. Cell Tissue Res. 2011;343(3):467–473. doi: 10.1007/s00441-010-1115-0. (PMID: 10.1007/s00441-010-1115-0)
Roy SG, Stevens MW, So L, Edinger AL. Reciprocal effects of rab7 deletion in activated and neglected T cells. Autophagy. 2013;9(7):1009–1023. doi: 10.4161/auto.24468. (PMID: 10.4161/auto.24468)
Genesis—2002—Moeller—Podocyte-specific Expression of Cre Recombinase in Transgenic Mice.pdf. 2003; doi: 10.1002/gene.10164.
Möller-Kerutt A, Rodriguez-Gatica JE, Wacker K, et al. Crumbs2 Is an Essential Slit Diaphragm Protein of the Renal Filtration Barrier. 2021. 10.1681/ASN.2020040501.
Möller-Kerutt A, Rodriguez-Gatica JE, Wacker K, Bhatia R, Siebrasse JP, Boon N. Crumbs2 is an essential slit diaphragm protein of the renal filtration barrier. J Am Soc Nephrol. 2021;32(5):1053–1070. doi: 10.1681/ASN.2020040501. (PMID: 10.1681/ASN.2020040501)
Weide T, Vollenbröker B, Schulze U, Djuric I, Edeling M, Bonse J. Pals1 haploinsufficiency results in proteinuria and cyst formation. J Am Soc Nephrol. 2017;28(7):2093–2107. doi: 10.1681/ASN.2016040474. (PMID: 10.1681/ASN.2016040474)
Rogg M, Maier JI, Van Wymersch C, et al. A-Parvin defines a specific integrin adhesome to maintain the glomerular filtration barrier. J Am Soc Nephrol. 2022;33(4):786–808. doi: 10.1681/ASN.2021101319. (PMID: 10.1681/ASN.2021101319)
Rogg M, Maier JI, Dotzauer R, Artelt N, Kretz O, Helmstädter M. SRGAP1 controls small rho GTPases to regulate podocyte foot process maintenance. J Am Soc Nephrol. 2021;32(3):563–579. doi: 10.1681/ASN.2020081126. (PMID: 10.1681/ASN.2020081126)
Michgehl U, Skryabin BV, Bayraktar S, Vollenbröker B, Ciarimboli G, Heitplatz B. Nephron-specific knockin of the PIKfyve-binding-deficient Vac14L156R mutant results in albuminuria and mesangial expansion. Am J Physiol Ren Physiol. 2018;315(5):F1307–F1319. doi: 10.1152/ajprenal.00191.2018. (PMID: 10.1152/ajprenal.00191.2018)
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3(6):1101–1108. doi: 10.1038/nprot.2008.73. (PMID: 10.1038/nprot.2008.73)
Vollenbröker B, George B, Wolfgart M, Saleem MA, Pavenstädt H, Weide T. mTOR regulates expression of slit diaphragm proteins and cytoskeleton structure in podocytes. Am J Physiol Ren Physiol. 2009;296(2):418–426. doi: 10.1152/ajprenal.90319.2008. (PMID: 10.1152/ajprenal.90319.2008)
Saleem MA, O’Hare MJ, Reiser J, Coward RJ, Inward CD, Farren T. A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression. J Am Soc Nephrol. 2002;13(3):630–638. doi: 10.1681/ASN.v133630. (PMID: 10.1681/ASN.v133630)
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281–2308. doi: 10.1038/nprot.2013.143. (PMID: 10.1038/nprot.2013.143)
Weide T, Vollenbröker B, Schulze U, Djuric I, Edeling M, Bonse J. Pals1 haploinsufficiency results in proteinuria and cyst formation. J Am Soc Nephrol. 2017;28(7):2093–2107. doi: 10.1681/ASN.2016040474. (PMID: 10.1681/ASN.2016040474)
Granado D, Müller D, Krausel V, Kruzel-Davila E, Schuberth C, Eschborn M. Intracellular APOL1 risk variants cause cytotoxicity accompanied by energy depletion. J Am Soc Nephrol. 2017;28(11):3227–3238. doi: 10.1681/ASN.2016111220. (PMID: 10.1681/ASN.2016111220)
Canton J, Grinstein S. Measuring Lysosomal pH by Fluorescence Microscopy. Elsevier Ltd; 2015. doi: 10.1016/bs.mcb.2014.10.021.
Kühnl A, Musiol A, Heitzig N, Johnson DE, Ehrhardt C, Grewal T. Late endosomal/lysosomal cholesterol accumulation is a host cell-protective mechanism inhibiting endosomal escape of influenza A virus. mBio. 2018;9(4):1–16. doi: 10.1128/mbio.01345-18. (PMID: 10.1128/mbio.01345-18)
Johnson DE, Ostrowski P, Jaumouillé V, Grinstein S. The position of lysosomes within the cell determines their luminal pH. J Cell Biol. 2016;212(6):677–692. doi: 10.1083/jcb.201507112. (PMID: 10.1083/jcb.201507112)
Dlugos CP, Picciotto C, Lepa C, Krakow M, Stöber A, Eddy ML. Nephrin signaling results in integrin β1 activation. J Am Soc Nephrol. 2019;30(6):1006–1019. doi: 10.1681/ASN.2018040362. (PMID: 10.1681/ASN.2018040362)
Heiden S, Siwek R, Lotz ML, Borkowsky S, Schröter R, Nedvetsky P. Apical-basal polarity regulators are essential for slit diaphragm assembly and endocytosis in Drosophila nephrocytes. Cell Mol Life Sci. 2021;78(7):3657–3672. doi: 10.1007/s00018-021-03769-y. (PMID: 10.1007/s00018-021-03769-y)
Maywald ML, Picciotto C, Lepa C, Bertgen L, Yousaf FS, Ricker A. Rap1 activity is essential for focal adhesion and slit diaphragm integrity. Front Cell Dev Biol. 2022;10:1–14. doi: 10.3389/fcell.2022.790365. (PMID: 10.3389/fcell.2022.790365)
Bright LJ, Lynch M. The Rab7 subfamily across Paramecium aurelia species; evidence of high conservation in sequence and function. Small GTPases. 2020;11(6):421–429. doi: 10.1080/21541248.2018.1502056. (PMID: 10.1080/21541248.2018.1502056)
Kashiwazaki J, Iwaki T, Takegawa K, Shimoda C, Nakamura T. Two fission yeast Rab7 homologs, Ypt7 and Ypt71, play antagonistic roles in the regulation of vacuolar morphology. Traffic. 2009;10(7):912–924. doi: 10.1111/j.1600-0854.2009.00907.x. (PMID: 10.1111/j.1600-0854.2009.00907.x)
MacKiewicz P, Wyroba E. Phylogeny and evolution of Rab7 and Rab9 proteins. BMC Evol Biol. 2009;9(1):101–119. doi: 10.1186/1471-2148-9-101. (PMID: 10.1186/1471-2148-9-101)
Brighouse A, Dacks JB, Field MC. Rab protein evolution and the history of the eukaryotic endomembrane system. Cell Mol Life Sci. 2010;67(20):3449–3465. doi: 10.1007/s00018-010-0436-1. (PMID: 10.1007/s00018-010-0436-1)
Weavers H, Prieto-Sánchez S, Grawe F, Garcia-López A, Artero R, Wilsch-Bräuninger M. The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm. Nature. 2009;457(7227):322–326. doi: 10.1038/nature07526. (PMID: 10.1038/nature07526)
Helmstädter M, Huber TB, Hermle T. Using the drosophila nephrocyte to model podocyte function and disease. Front Pediatr. 2017;5:262–269. doi: 10.3389/fped.2017.00262. (PMID: 10.3389/fped.2017.00262)
Miyaki T, Kawasaki Y, Matsumoto A, Kakuta S, Sakai T, Ichimura K. Nephrocytes are part of the spectrum of filtration epithelial diversity. Cell Tissue Res. 2020;382(3):609–625. doi: 10.1007/s00441-020-03313-7. (PMID: 10.1007/s00441-020-03313-7)
Klumperman J, Raposo G. The complex ultrastructure of the endolysosomal system. Cold Spring Harb Perspect Biol. 2014;6(10):1–22. doi: 10.1101/cshperspect.a016857. (PMID: 10.1101/cshperspect.a016857)
De Luca M, Bucci C. A new V-ATPase regulatory mechanism mediated by the rab interacting lysosomal protein (RILP). Commun Integr Biol. 2014;7(5):1–4. doi: 10.4161/cib.29616. (PMID: 10.4161/cib.29616)
Wu M, Wang T, Loh E, Hong W, Song H. Structural basis for recruitment of RILP by small GTPase Rab7. EMBO J. 2005;24(8):1491–1501. doi: 10.1038/sj.emboj.7600643. (PMID: 10.1038/sj.emboj.7600643)
Breton S, Brown D. Regulation of luminal acidification by the V-ATPase. Physiology. 2013;28(5):318–329. doi: 10.1152/physiol.00007.2013. (PMID: 10.1152/physiol.00007.2013)
Guerra F, Bucci C. Multiple roles of the small GTPase Rab7. Cells. 2016;5(3):34. doi: 10.3390/cells5030034. (PMID: 10.3390/cells5030034)
Kawamura N, Sun-Wada GH, Aoyama M, Harada A, Takasuga S, Sasaki T. Delivery of endosomes to lysosomes via microautophagy in the visceral endoderm of mouse embryos. Nat Commun. 2012;3(1):1071. doi: 10.1038/ncomms2069. (PMID: 10.1038/ncomms2069)
Takahashi K, Mashima H, Miura K, Maeda D, Goto A, Goto T. Disruption of small GTPase Rab7 exacerbates the severity of acute pancreatitis in experimental mouse models. Sci Rep. 2017;7(1):2817–2916. doi: 10.1038/s41598-017-02988-3. (PMID: 10.1038/s41598-017-02988-3)
Bucci C, de Luca M. Molecular basis of Charcot-Marie-Tooth type 2B disease. Biochem Soc Trans. 2012;40(6):1368–1372. doi: 10.1042/bst20120197. (PMID: 10.1042/bst20120197)
Cherry S, Jin EJ, Özel MN, Lu Z, Agi E, Wang D. Charcot-Marie-Tooth 2B mutations in rab7 cause dosage-dependent neurodegeneration due to partial loss of function. Elife. 2013;2:1–22. doi: 10.7554/elife.01064. (PMID: 10.7554/elife.01064)
Romano R, Rivellini C, de Luca M, Tonlorenzi R, Beli R, Manganelli F. Alteration of the late endocytic pathway in Charcot–Marie–Tooth type 2B disease. Cell Mol Life Sci. 2021;78(1):351–372. doi: 10.1007/s00018-020-03510-1. (PMID: 10.1007/s00018-020-03510-1)
Spinosa MR, Progida C, de Luca A, Colucci AMR, Alifano P, Bucci C. Functional characterization of Rab7 mutant proteins associated with Charcot-Marie-Tooth type 2B disease. J Neurosci. 2008;28(7):1640–1648. doi: 10.1523/jneurosci.3677-07.2008. (PMID: 10.1523/jneurosci.3677-07.2008)
Bayraktar S, Nehrig J, Menis E, Karli K, Janning A, Struk T. A deregulated stress response underlies distinct INF2-associated disease profiles. J Am Soc Nephrol. 2020;31(6):1296–1313. doi: 10.1681/ASN.2019111174. (PMID: 10.1681/ASN.2019111174)
Boyer O, Nevo F, Plaisier E, Funalot B, Gribouval O, Benoit G. INF2 mutations in Charcot–Marie–Tooth disease with glomerulopathy. New Engl J Med. 2011;365(25):2377–2388. doi: 10.1056/nejmoa1109122. (PMID: 10.1056/nejmoa1109122)
Echaniz-Laguna A, Latour P. A cryptic splicing mutation in the INF2 gene causing Charcot-Marie-Tooth disease with minimal glomerular dysfunction. J Peripher Nerv Syst. 2019;24(1):120–124. doi: 10.1111/jns.12308. (PMID: 10.1111/jns.12308)
Magalhaes J, Gegg ME, Migdalska-Richards A, Doherty MK, Whitfield PD, Schapira AHV. Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: relevance to Parkinson disease. Hum Mol Genet. 2016;25(16):3432–3445. doi: 10.1093/hmg/ddw185. (PMID: 10.1093/hmg/ddw185)
Rong Y, McPhee CK, Deng S, Huang L, Chen L, Liu M. Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. Proc Natl Acad Sci U S A. 2011;108(19):7826–7831. doi: 10.1073/pnas.1013800108. (PMID: 10.1073/pnas.1013800108)
Zhang J, Zhou W, Lin J, Wei P, Zhang Y, Jin P. Autophagic lysosomal reformation depends on mTOR reactivation in H2O2-induced autophagy. Int J Biochem Cell Biol. 2016;70:76–81. doi: 10.1016/j.biocel.2015.11.009. (PMID: 10.1016/j.biocel.2015.11.009)
Kuchitsu Y, Fukuda M. Revisiting Rab7 functions in mammalian autophagy: rab7 knockout studies. Cells. 2018;7(11):215. doi: 10.3390/cells7110215. (PMID: 10.3390/cells7110215)
Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y, Peng J. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature. 2010;465(7300):942–946. doi: 10.1038/nature09076. (PMID: 10.1038/nature09076)
Chen Y, Yu L. Development of research into autophagic lysosome reformation. Mol Cells. 2018;41(1):45–49. doi: 10.14348/molcells.2018.2265. (PMID: 10.14348/molcells.2018.2265)
Munson MJ, Allen GF, Toth R, Campbell DG, Lucocq JM, Ganley IG. mTOR activates the VPS 34–UVRAG complex to regulate autolysosomal tubulation and cell survival. EMBO J. 2015;34(17):2272–2290. doi: 10.15252/embj.201590992. (PMID: 10.15252/embj.201590992)
Ikonomov OC, Sbrissa D, Venkatareddy M, Tisdale E, Garg P, Shisheva A. Class III PI 3-kinase is the main source of PtdIns3P substrate and membrane recruitment signal for PIKfyve constitutive function in podocyte endomembrane homeostasis. Biochim Biophys Acta Mol Cell Res. 2015;1853(5):1240–1250. doi: 10.1016/j.bbamcr.2015.01.008. (PMID: 10.1016/j.bbamcr.2015.01.008)
Fu Y, Zhu J-Y, Zhang F, Adam R, Zhanzheng Zhao ZH. HHS public access. Physiol Behav. 2018;176(1):139–148. doi: 10.1007/s00441-017-2575-2. (PMID: 10.1007/s00441-017-2575-2)
de Luca M, Cogli L, Progida C, et al. Correction to RILP regulates vacuolar ATPase through interaction with the V1G1 subunit [J. Cell Sci. 127, (2014) 2697–2708]. J Cell Sci. 2015;128(14):2565. doi: 10.1242/jcs.142604. (PMID: 10.1242/jcs.142604)
Mindell JA. Lysosomal acidification mechanisms. Annu Rev Physiol. 2012;74(1):69–86. doi: 10.1146/annurev-physiol-012110-142317. (PMID: 10.1146/annurev-physiol-012110-142317)
Riediger F, Quack I, Qadri F, Hartleben B, Park JK, Potthoff SA. Prorenin receptor is essential for podocyte autophagy and survival. J Am Soc Nephrol. 2011;22(12):2193–2202. doi: 10.1681/ASN.2011020200. (PMID: 10.1681/ASN.2011020200)
Lawrence RE, Zoncu R. The lysosome as a cellular centre for signalling, metabolism and quality control. Nat Cell Biol. 2019;21(2):133–142. doi: 10.1038/s41556-018-0244-7. (PMID: 10.1038/s41556-018-0244-7)
DiCiccio JE, Steinberg BE. Lysosomal pH and analysis of the counter ion pathways that support acidification. J Gen Physiol. 2011;137(4):385–390. doi: 10.1085/jgp.201110596. (PMID: 10.1085/jgp.201110596)
Hu YB, Dammer EB, Ren RJ, Wang G. The endosomal-lysosomal system: from acidification and cargo sorting to neurodegeneration. Transl Neurodegenerating. 2015;4(1):1–10. doi: 10.1186/s40035-015-0041-1. (PMID: 10.1186/s40035-015-0041-1)
Jialiu Z, Orian SS, Mark WG. Modulating lysosomal pH: a molecular and nanoscale materials design perspective. HHS Public Access. 2017;176(10):139–148. doi: 10.36069/jols/20201204. (PMID: 10.36069/jols/20201204)
تواريخ الأحداث: Date Created: 20230406 Date Completed: 20230705 Latest Revision: 20240702
رمز التحديث: 20240702
مُعرف محوري في PubMed: PMC10356157
DOI: 10.1681/ASN.0000000000000126
PMID: 37022133
قاعدة البيانات: MEDLINE
الوصف
تدمد:1533-3450
DOI:10.1681/ASN.0000000000000126