دورية أكاديمية

Large-scale genetic characterization of the model sulfate-reducing bacterium, Desulfovibrio vulgaris Hildenborough.

التفاصيل البيبلوغرافية
العنوان: Large-scale genetic characterization of the model sulfate-reducing bacterium, Desulfovibrio vulgaris Hildenborough.
المؤلفون: Trotter VV; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States., Shatsky M; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States., Price MN; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States., Juba TR; Department of Biochemistry, University of Missouri, Columbia, MO, United States., Zane GM; Department of Biochemistry, University of Missouri, Columbia, MO, United States., De León KB; Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States., Majumder EL; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States., Gui Q; Department of Biochemistry, University of Missouri, Columbia, MO, United States., Ali R; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States., Wetmore KM; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States., Kuehl JV; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States., Arkin AP; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.; Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States., Wall JD; Department of Biochemistry, University of Missouri, Columbia, MO, United States., Deutschbauer AM; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States., Chandonia JM; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States., Butland GP; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
المصدر: Frontiers in microbiology [Front Microbiol] 2023 Mar 31; Vol. 14, pp. 1095191. Date of Electronic Publication: 2023 Mar 31 (Print Publication: 2023).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Frontiers Research Foundation Country of Publication: Switzerland NLM ID: 101548977 Publication Model: eCollection Cited Medium: Print ISSN: 1664-302X (Print) Linking ISSN: 1664302X NLM ISO Abbreviation: Front Microbiol Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Lausanne : Frontiers Research Foundation
مستخلص: Sulfate-reducing bacteria (SRB) are obligate anaerobes that can couple their growth to the reduction of sulfate. Despite the importance of SRB to global nutrient cycles and their damage to the petroleum industry, our molecular understanding of their physiology remains limited. To systematically provide new insights into SRB biology, we generated a randomly barcoded transposon mutant library in the model SRB Desulfovibrio vulgaris Hildenborough (DvH) and used this genome-wide resource to assay the importance of its genes under a range of metabolic and stress conditions. In addition to defining the essential gene set of DvH, we identified a conditional phenotype for 1,137 non-essential genes. Through examination of these conditional phenotypes, we were able to make a number of novel insights into our molecular understanding of DvH, including how this bacterium synthesizes vitamins. For example, we identified DVU0867 as an atypical L-aspartate decarboxylase required for the synthesis of pantothenic acid, provided the first experimental evidence that biotin synthesis in DvH occurs via a specialized acyl carrier protein and without methyl esters, and demonstrated that the uncharacterized dehydrogenase DVU0826:DVU0827 is necessary for the synthesis of pyridoxal phosphate. In addition, we used the mutant fitness data to identify genes involved in the assimilation of diverse nitrogen sources and gained insights into the mechanism of inhibition of chlorate and molybdate. Our large-scale fitness dataset and RB-TnSeq mutant library are community-wide resources that can be used to generate further testable hypotheses into the gene functions of this environmentally and industrially important group of bacteria.
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
(Copyright © 2023 Trotter, Shatsky, Price, Juba, Zane, De León, Majumder, Gui, Ali, Wetmore, Kuehl, Arkin, Wall, Deutschbauer, Chandonia and Butland.)
References: Appl Environ Microbiol. 2009 Dec;75(24):7682-91. (PMID: 19837844)
J Biol Chem. 2012 Oct 26;287(44):37010-20. (PMID: 22965231)
ISME J. 2015 Mar;9(3):542-51. (PMID: 25259571)
Front Microbiol. 2015 Jun 26;6:606. (PMID: 26167158)
Appl Environ Microbiol. 2013 Dec;79(23):7510-7. (PMID: 24077707)
ISME J. 2015 Jun;9(6):1295-305. (PMID: 25405978)
Nucleic Acids Res. 2016 Jan 4;44(D1):D372-9. (PMID: 26546518)
Mol Biosyst. 2011 Jun;7(6):1811-21. (PMID: 21437340)
Nucleic Acids Res. 2020 Jan 8;48(D1):D689-D695. (PMID: 31598706)
Genome Res. 2009 Oct;19(10):1836-42. (PMID: 19622793)
Environ Microbiol. 2019 Apr;21(4):1395-1406. (PMID: 30807684)
J Biol Chem. 2017 Jun 16;292(24):10250-10261. (PMID: 28446608)
Biochem J. 2007 Oct 1;407(1):1-13. (PMID: 17822383)
BMC Genomics. 2013 Nov 01;14:745. (PMID: 24175918)
Microbiol Resour Announc. 2021 Mar 18;10(11):. (PMID: 33737356)
Mol Syst Biol. 2017 Mar 20;13(3):919. (PMID: 28320772)
J Gen Microbiol. 1970 Apr;61(1):27-31. (PMID: 5489063)
Annu Rev Genet. 2008;42:269-86. (PMID: 18680433)
Mol Cell Proteomics. 2016 Jun;15(6):2186-202. (PMID: 27099342)
mBio. 2015 May 12;6(3):e00306-15. (PMID: 25968644)
Annu Rev Biochem. 2005;74:791-831. (PMID: 15952903)
Cells. 2020 Mar 12;9(3):. (PMID: 32178484)
Environ Microbiol. 2019 Feb;21(2):784-799. (PMID: 30536693)
J Bacteriol. 2011 Oct;193(20):5716-27. (PMID: 21840973)
J Bacteriol. 2014 Mar;196(6):1222-30. (PMID: 24415726)
Int J Syst Evol Microbiol. 2020 Nov;70(11):5972-6016. (PMID: 33151140)
Appl Environ Microbiol. 2008 Oct;74(19):6144-6. (PMID: 18689514)
Biotechnol Bioeng. 2002 Nov 20;80(4):369-79. (PMID: 12325145)
Proc Natl Acad Sci U S A. 2015 Dec 1;112(48):E6634-43. (PMID: 26508635)
Environ Microbiol. 2014 Nov;16(11):3463-86. (PMID: 24447568)
Nat Biotechnol. 2004 May;22(5):554-9. (PMID: 15077118)
mSystems. 2017 Aug 15;2(4):. (PMID: 28845458)
J Biol Chem. 1962 Jan;237:198-203. (PMID: 14484820)
Appl Environ Microbiol. 2010 Aug;76(16):5500-9. (PMID: 20581180)
Genome Biol. 2011 Oct 12;12(10):R99. (PMID: 21992415)
Front Microbiol. 2014 Jun 26;5:315. (PMID: 25071731)
Nat Rev Microbiol. 2008 Jun;6(6):441-54. (PMID: 18461075)
Nucleic Acids Res. 2013 Jan;41(Database issue):D387-95. (PMID: 23197656)
mBio. 2017 Oct 17;8(5):. (PMID: 29042504)
Genome Biol. 2004;5(11):R90. (PMID: 15535866)
Nature. 2018 May;557(7706):503-509. (PMID: 29769716)
mBio. 2014 May 27;5(3):e01041-14. (PMID: 24865553)
Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13582-7. (PMID: 23898195)
Environ Microbiol Rep. 2014 Dec;6(6):558-64. (PMID: 25756108)
Mol Cell Proteomics. 2016 May;15(5):1539-55. (PMID: 26873250)
J Bacteriol. 2017 Dec 20;200(2):. (PMID: 29061664)
Annu Rev Biochem. 1990;59:29-59. (PMID: 2197977)
Nat Methods. 2012 Mar 04;9(4):357-9. (PMID: 22388286)
Nucleic Acids Res. 2004 Jan 1;32(Database issue):D271-2. (PMID: 14681410)
Nat Rev Microbiol. 2013 Jul;11(7):435-42. (PMID: 23712350)
Microbiology (Reading). 2019 Mar;165(3):254-269. (PMID: 30556806)
PLoS Genet. 2011 Nov;7(11):e1002385. (PMID: 22125499)
Nucleic Acids Res. 2010 Jan;38(Database issue):D396-400. (PMID: 19906701)
Curr Opin Microbiol. 2016 Oct;33:140-146. (PMID: 27461928)
Nat Methods. 2009 Oct;6(10):767-72. (PMID: 19767758)
Brief Bioinform. 2019 Jul 19;20(4):1085-1093. (PMID: 29447345)
Front Microbiol. 2023 Mar 31;14:1095191. (PMID: 37065130)
Arch Microbiol. 2002 Sep;178(3):193-201. (PMID: 12189420)
Front Microbiol. 2014 Oct 31;5:577. (PMID: 25400629)
Mol Microbiol. 2009 Nov;74(3):742-57. (PMID: 19818021)
J Mol Microbiol Biotechnol. 2001 Jan;3(1):1-20. (PMID: 11200221)
فهرسة مساهمة: Keywords: RB-TnSeq; chlorate toxicity; high-thoughput genetics; molybdenum; nitrogen fixation; nitrogen utilization; tungsten; vitamin synthesis
سلسلة جزيئية: figshare 10.6084/m9.figshare.13172087.v1
تواريخ الأحداث: Date Created: 20230417 Latest Revision: 20230919
رمز التحديث: 20240829
مُعرف محوري في PubMed: PMC10102598
DOI: 10.3389/fmicb.2023.1095191
PMID: 37065130
قاعدة البيانات: MEDLINE
الوصف
تدمد:1664-302X
DOI:10.3389/fmicb.2023.1095191