دورية أكاديمية

GPU-specific algorithms for improved solute sampling in grand canonical Monte Carlo simulations.

التفاصيل البيبلوغرافية
العنوان: GPU-specific algorithms for improved solute sampling in grand canonical Monte Carlo simulations.
المؤلفون: Zhao M; Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA., Kognole AA; SilcsBio LLC, Baltimore, Maryland, USA., Jo S; SilcsBio LLC, Baltimore, Maryland, USA., Tao A; SilcsBio LLC, Baltimore, Maryland, USA., Hazel A; Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA., MacKerell AD Jr; Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA.
المصدر: Journal of computational chemistry [J Comput Chem] 2023 Jul 30; Vol. 44 (20), pp. 1719-1732. Date of Electronic Publication: 2023 Apr 24.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: United States NLM ID: 9878362 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1096-987X (Electronic) Linking ISSN: 01928651 NLM ISO Abbreviation: J Comput Chem Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: New York : Wiley,
مستخلص: The Grand Canonical Monte Carlo (GCMC) ensemble defined by the excess chemical potential, μ ex , volume, and temperature, in the context of molecular simulations allows for variations in the number of particles in the system. In practice, GCMC simulations have been widely applied for the sampling of rare gasses and water, but limited in the context of larger molecules. To overcome this limitation, the oscillating μ ex GCMC method was introduced and shown to be of utility for sampling small solutes, such as formamide, propane, and benzene, as well as for ionic species such as monocations, acetate, and methylammonium. However, the acceptance of GCMC insertions is low, and the method is computationally demanding. In the present study, we improved the sampling efficiency of the GCMC method using known cavity-bias and configurational-bias algorithms in the context of GPU architecture. Specifically, for GCMC simulations of aqueous solution systems, the configurational-bias algorithm was extended by applying system partitioning in conjunction with a random interval extraction algorithm, thereby improving the efficiency in a highly parallel computing environment. The method is parallelized on the GPU using CUDA and OpenCL, allowing for the code to run on both Nvidia and AMD GPUs, respectively. Notably, the method is particularly well suited for GPU computing as the large number of threads allows for simultaneous sampling of a large number of configurations during insertion attempts without additional computational overhead. In addition, the partitioning scheme allows for simultaneous insertion attempts for large systems, offering considerable efficiency. Calculations on the BK Channel, a transporter, including a lipid bilayer with over 760,000 atoms, show a speed up of ~53-fold through the use of system partitioning. The improved algorithm is then combined with an enhanced μ ex oscillation protocol and shown to be of utility in the context of the site-identification by ligand competitive saturation (SILCS) co-solvent sampling approach as illustrated through application to the protein CDK2.
(© 2023 Wiley Periodicals LLC.)
References: J Comput Chem. 2005 Dec;26(16):1701-18. (PMID: 16211538)
Mol Pharm. 2020 Nov 2;17(11):4323-4333. (PMID: 32965126)
Chem Sci. 2021 May 25;12(25):8844-8858. (PMID: 34257885)
Biochim Biophys Acta Gen Subj. 2020 Apr;1864(4):129519. (PMID: 31911242)
J Am Chem Soc. 2015 Dec 2;137(47):14930-43. (PMID: 26509924)
J Chem Inf Model. 2019 Feb 25;59(2):754-765. (PMID: 30640456)
J Comput Aided Mol Des. 2022 Oct;36(10):767-779. (PMID: 36198874)
ACS Omega. 2016 Oct 31;1(4):680-688. (PMID: 27819065)
Proc Natl Acad Sci U S A. 2011 Nov 8;108(45):E1009-18. (PMID: 22025687)
J Phys Chem B. 2018 May 31;122(21):5466-5486. (PMID: 29649876)
Nat Struct Biol. 2002 Oct;9(10):745-9. (PMID: 12244298)
J Chem Phys. 2004 Oct 1;121(13):6392-400. (PMID: 15446937)
Nat Methods. 2017 Jan;14(1):71-73. (PMID: 27819658)
J Chem Theory Comput. 2022 Sep 13;18(9):5672-5691. (PMID: 35913731)
J Comput Chem. 2010 Mar;31(4):671-90. (PMID: 19575467)
J Chem Phys. 2008 Mar 21;128(11):115103. (PMID: 18361618)
J Chem Inf Model. 2015 Mar 23;55(3):700-8. (PMID: 25692383)
J Chem Theory Comput. 2018 Dec 11;14(12):6586-6597. (PMID: 30451501)
Phys Rev A Gen Phys. 1985 Mar;31(3):1695-1697. (PMID: 9895674)
Chemistry (Basel). 2022 Sep;4(3):630-646. (PMID: 36712295)
J Chem Theory Comput. 2014 Jun 10;10(6):2281-2290. (PMID: 24932136)
J Chem Theory Comput. 2018 Oct 9;14(10):5290-5302. (PMID: 30183291)
J Chem Inf Model. 2006 Jan-Feb;46(1):231-42. (PMID: 16426059)
J Phys Chem B. 2010 Jun 17;114(23):7830-43. (PMID: 20496934)
Biophys J. 2020 Feb 25;118(4):909-921. (PMID: 31676132)
Biophys J. 2020 Mar 24;118(6):1424-1437. (PMID: 32053774)
J Chem Inf Model. 2015 Feb 23;55(2):407-20. (PMID: 25622696)
Elife. 2019 Nov 22;8:. (PMID: 31755864)
Proteins. 2019 Apr;87(4):289-301. (PMID: 30582220)
معلومات مُعتمدة: R35 GM131710 United States GM NIGMS NIH HHS; R35GM131710 United States NH NIH HHS
فهرسة مساهمة: Keywords: SILCS; chemical potential; co-solvent molecular dynamics; computer-aided drug design; enhanced solute sampling
تواريخ الأحداث: Date Created: 20230424 Date Completed: 20230620 Latest Revision: 20240921
رمز التحديث: 20240921
مُعرف محوري في PubMed: PMC10330275
DOI: 10.1002/jcc.27121
PMID: 37093676
قاعدة البيانات: MEDLINE
الوصف
تدمد:1096-987X
DOI:10.1002/jcc.27121