دورية أكاديمية

Massively parallel base editing to map variant effects in human hematopoiesis.

التفاصيل البيبلوغرافية
العنوان: Massively parallel base editing to map variant effects in human hematopoiesis.
المؤلفون: Martin-Rufino JD; Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; PhD Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA., Castano N; Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA., Pang M; Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA., Grody EI; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA., Joubran S; Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Chemical Biology PhD Program, Harvard Medical School, Boston, MA 02115, USA., Caulier A; Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA., Wahlster L; Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA., Li T; Department of Pharmacology and Yale Cancer Biology Institute, Yale University School of Medicine, New Haven, CT 06510, USA., Qiu X; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA., Riera-Escandell AM; Independent Researcher, now at Google, Zurich, Switzerland., Newby GA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA., Al'Khafaji A; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA., Chaudhary S; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA., Black S; Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA., Weng C; Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA., Munson G; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA., Liu DR; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA., Wlodarski MW; Department of Hematology, St Jude Children's Research Hospital, Memphis, TN 38105, USA., Sims K; St. Jude Affiliate Clinic at Our Lady of the Lake Children's Health, Baton Rouge, LA 70809, USA., Oakley JH; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA., Fasano RM; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA., Xavier RJ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA., Lander ES; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA., Klein DE; Department of Pharmacology and Yale Cancer Biology Institute, Yale University School of Medicine, New Haven, CT 06510, USA., Sankaran VG; Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA. Electronic address: sankaran@broadinstitute.org.
المصدر: Cell [Cell] 2023 May 25; Vol. 186 (11), pp. 2456-2474.e24. Date of Electronic Publication: 2023 May 02.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Cell Press Country of Publication: United States NLM ID: 0413066 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-4172 (Electronic) Linking ISSN: 00928674 NLM ISO Abbreviation: Cell Subsets: MEDLINE
أسماء مطبوعة: Publication: Cambridge, Ma : Cell Press
Original Publication: Cambridge, MIT Press.
مواضيع طبية MeSH: Gene Editing* , Hematopoietic Stem Cells*/metabolism, Humans ; Cell Differentiation ; CRISPR-Cas Systems ; Genome ; Hematopoiesis ; Genetic Engineering ; Single-Cell Analysis
مستخلص: Systematic evaluation of the impact of genetic variants is critical for the study and treatment of human physiology and disease. While specific mutations can be introduced by genome engineering, we still lack scalable approaches that are applicable to the important setting of primary cells, such as blood and immune cells. Here, we describe the development of massively parallel base-editing screens in human hematopoietic stem and progenitor cells. Such approaches enable functional screens for variant effects across any hematopoietic differentiation state. Moreover, they allow for rich phenotyping through single-cell RNA sequencing readouts and separately for characterization of editing outcomes through pooled single-cell genotyping. We efficiently design improved leukemia immunotherapy approaches, comprehensively identify non-coding variants modulating fetal hemoglobin expression, define mechanisms regulating hematopoietic differentiation, and probe the pathogenicity of uncharacterized disease-associated variants. These strategies will advance effective and high-throughput variant-to-function mapping in human hematopoiesis to identify the causes of diverse diseases.
Competing Interests: Declaration of interests D.R.L. and G.A.N. have filed patent applications on gene-editing technologies through the Broad Institute of MIT and Harvard. D.R.L. is a consultant and equity owner of Beam Therapeutics, Pairwise Plants, Prime Medicine, Chroma Medicine and Nvelop Therapeutics, companies that use or deliver genome editing or genome engineering technologies. R.J.X. is the co-founder of Jnana Therapeutics and Celsius Therapeutics, the director of Moonlake Immunotherapeutics and a scientific advisory board member to Nestle, all unrelated to the present work. V.G.S. serves as an advisor to and/or has equity in Branch Biosciences, Ensoma, Novartis, Forma, and Cellarity, all unrelated to the present work.
(Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.)
التعليقات: Comment in: Cell Rep Methods. 2023 Jul 24;3(7):100541. doi: 10.1016/j.crmeth.2023.100541. (PMID: 37533644)
References: Cell Stem Cell. 2019 Apr 4;24(4):551-565.e8. (PMID: 30905619)
Ann Intern Med. 2022 Jul;175(7):994-1000. (PMID: 35436152)
Science. 2008 Dec 19;322(5909):1839-42. (PMID: 19056937)
Nat Genet. 2022 Oct;54(10):1514-1526. (PMID: 36138229)
Nat Biotechnol. 2021 Nov;39(11):1414-1425. (PMID: 34183861)
Cell. 2018 May 31;173(6):1439-1453.e19. (PMID: 29856956)
Nat Biotechnol. 2021 Nov;39(11):1403-1413. (PMID: 34155407)
PLoS Genet. 2014 Dec 18;10(12):e1004890. (PMID: 25521328)
Transfusion. 2009 Oct;49(10):2109-21. (PMID: 19497054)
Cell. 2020 Sep 17;182(6):1384-1400. (PMID: 32946781)
Nat Commun. 2022 Nov 4;13(1):6618. (PMID: 36333351)
Nat Genet. 2000 Mar;24(3):266-70. (PMID: 10700180)
Blood. 2022 May 26;139(21):3159-3165. (PMID: 34758059)
Nat Biotechnol. 2022 Feb;40(2):189-193. (PMID: 33927418)
Nature. 2021 Jul;595(7866):295-302. (PMID: 34079130)
Nat Methods. 2017 Mar;14(3):297-301. (PMID: 28099430)
Front Oncol. 2020 Aug 07;10:1387. (PMID: 32850447)
Cell Stem Cell. 2023 May 4;30(5):706-721.e8. (PMID: 37098346)
Cold Spring Harb Perspect Med. 2013 Jan 01;3(1):a011643. (PMID: 23209159)
Nat Biotechnol. 2020 Aug;38(8):954-961. (PMID: 32231336)
Cell Stem Cell. 2016 Jan 7;18(1):73-78. (PMID: 26607381)
Elife. 2019 May 09;8:. (PMID: 31070582)
Nat Rev Genet. 2018 Aug;19(8):491-504. (PMID: 29844615)
Cell. 2016 Dec 15;167(7):1853-1866.e17. (PMID: 27984732)
Nat Genet. 2021 Mar;53(3):322-331. (PMID: 33649593)
N Engl J Med. 2021 Jan 21;384(3):252-260. (PMID: 33283989)
Cell. 2016 Dec 15;167(7):1883-1896.e15. (PMID: 27984734)
Nat Biotechnol. 2023 Jan;41(1):96-107. (PMID: 36076084)
Cell. 2018 Dec 13;175(7):1958-1971.e15. (PMID: 30449619)
Bioinformatics. 2014 May 15;30(10):1473-5. (PMID: 24463181)
Nucleic Acids Res. 2016 Jan 4;44(D1):D862-8. (PMID: 26582918)
Nat Commun. 2021 Aug 17;12(1):4991. (PMID: 34404810)
Genome Biol. 2018 Feb 6;19(1):15. (PMID: 29409532)
Nat Biotechnol. 2023 Aug;41(8):1080-1084. (PMID: 36624150)
Leukemia. 2019 Mar;33(3):762-808. (PMID: 30291334)
Science. 2020 Apr 17;368(6488):290-296. (PMID: 32217751)
Blood. 2009 Feb 12;113(7):1422-31. (PMID: 19059876)
Immunity. 2021 Oct 12;54(10):2417-2432.e5. (PMID: 34453879)
Nat Biotechnol. 2021 Jan;39(1):35-40. (PMID: 32690970)
Nat Commun. 2022 Jun 27;13(1):3685. (PMID: 35760782)
Elife. 2022 Feb 11;11:. (PMID: 35147495)
Science. 2018 Sep 21;361(6408):1259-1262. (PMID: 30166441)
Nat Biotechnol. 2022 Jun;40(6):896-905. (PMID: 35058622)
Stem Cell Reports. 2015 Feb 10;4(2):171-80. (PMID: 25601207)
Proc Natl Acad Sci U S A. 2019 Jun 11;116(24):11978-11987. (PMID: 31138698)
Nat Commun. 2015 May 14;6:7085. (PMID: 25971621)
Nat Methods. 2017 May;14(5):521-530. (PMID: 28369043)
J Leukoc Biol. 2007 Sep;82(3):594-602. (PMID: 17595380)
N Engl J Med. 2021 Jan 21;384(3):205-215. (PMID: 33283990)
Cell. 2018 Apr 5;173(2):430-442.e17. (PMID: 29606353)
Science. 2021 Jul 9;373(6551):. (PMID: 34244384)
Nat Genet. 2021 Aug;53(8):1177-1186. (PMID: 34341563)
Curr Opin Hematol. 2021 Jul 1;28(4):269-276. (PMID: 33901135)
Nat Commun. 2018 Dec 21;9(1):5416. (PMID: 30575746)
Nat Methods. 2018 Apr;15(4):271-274. (PMID: 29457792)
Cell. 2021 Feb 18;184(4):1064-1080.e20. (PMID: 33606977)
Blood. 1996 Apr 1;87(7):2632-40. (PMID: 8639878)
CRISPR J. 2022 Jun;5(3):389-396. (PMID: 35238619)
Blood. 2007 Mar 15;109(6):2618-21. (PMID: 17148589)
Nature. 2019 Dec;576(7785):149-157. (PMID: 31634902)
Nat Med. 2022 Oct;28(10):1985-1988. (PMID: 35970921)
Nat Genet. 2018 Apr;50(4):498-503. (PMID: 29610478)
Nature. 2020 Jan;577(7789):179-189. (PMID: 31915397)
Nature. 2017 Nov 23;551(7681):464-471. (PMID: 29160308)
BMC Bioinformatics. 2012 Jun 18;13:134. (PMID: 22708584)
Leukemia. 2008 Feb;22(2):432-4. (PMID: 17713552)
Nat Biotechnol. 2019 Sep;37(9):1070-1079. (PMID: 31332326)
Cell. 2021 Apr 29;184(9):2503-2519.e17. (PMID: 33838111)
Cell. 2020 Sep 3;182(5):1198-1213.e14. (PMID: 32888493)
Nat Methods. 2014 Aug;11(8):783-784. (PMID: 25075903)
Nat Biotechnol. 2022 Jun;40(6):862-873. (PMID: 35165384)
Cells. 2020 Jul 02;9(7):. (PMID: 32630835)
Nat Biotechnol. 2020 Jul;38(7):883-891. (PMID: 32433547)
Nat Biotechnol. 2019 Mar;37(3):224-226. (PMID: 30809026)
Nature. 2016 Apr 20;533(7603):420-4. (PMID: 27096365)
Nat Rev Genet. 2018 Dec;19(12):770-788. (PMID: 30323312)
Cell. 2016 Dec 15;167(7):1867-1882.e21. (PMID: 27984733)
J Clin Invest. 2012 Jul;122(7):2439-43. (PMID: 22706301)
Nat Cancer. 2021 Jul;2(7):758-772. (PMID: 34939038)
Blood. 2002 Sep 15;100(6):2040-5. (PMID: 12200364)
Hum Mol Genet. 2002 Jan 15;11(2):147-52. (PMID: 11809723)
Proc Natl Acad Sci U S A. 2017 Jan 17;114(3):E327-E336. (PMID: 28031487)
Sci Transl Med. 2017 Nov 1;9(414):. (PMID: 29093179)
Nat Biotechnol. 2021 Jan;39(1):41-46. (PMID: 32690971)
Nat Commun. 2021 Apr 23;12(1):2437. (PMID: 33893286)
Nat Biotechnol. 2023 Jun 8;:. (PMID: 37291427)
EMBO Mol Med. 2019 Mar;11(3):. (PMID: 30670463)
Blood. 2007 Apr 15;109(8):3297-9. (PMID: 17209061)
Cell. 2020 Sep 3;182(5):1214-1231.e11. (PMID: 32888494)
Genome Biol. 2015 Dec 15;16:280. (PMID: 26671237)
Nat Immunol. 2023 Jan;24(1):69-83. (PMID: 36522544)
Mol Ther. 2019 Jan 2;27(1):137-150. (PMID: 30424953)
Nat Commun. 2019 Mar 8;10(1):1136. (PMID: 30850590)
Nat Biotechnol. 2022 Nov;40(11):1644-1653. (PMID: 35668323)
Cell. 2022 Feb 17;185(4):690-711.e45. (PMID: 35108499)
Exp Hematol. 1993 Jul;21(7):870-7. (PMID: 7686502)
Blood. 2022 Aug 11;140(6):556-570. (PMID: 35605178)
Nucleic Acids Res. 2014 Jan;42(Database issue):D980-5. (PMID: 24234437)
Nat Methods. 2018 Nov;15(11):941-946. (PMID: 30297964)
Nat Genet. 2021 Jun;53(6):869-880. (PMID: 33958780)
Nat Genet. 2002 Sep;32(1):148-52. (PMID: 12172547)
Nat Methods. 2017 Apr;14(4):417-419. (PMID: 28263959)
Mol Cell. 2019 Mar 21;73(6):1292-1305.e8. (PMID: 30765193)
Blood. 2022 Apr 21;139(16):2534-2546. (PMID: 35030251)
J Clin Immunol. 2022 Oct;42(7):1473-1507. (PMID: 35748970)
Nat Commun. 2022 Aug 11;13(1):4724. (PMID: 35953477)
Cell. 2021 Feb 18;184(4):1081-1097.e19. (PMID: 33606978)
Nat Genet. 2021 Jun;53(6):895-905. (PMID: 33846636)
Nat Genet. 2022 Aug;54(8):1133-1144. (PMID: 35817986)
Genome Biol. 2019 Jun 3;20(1):114. (PMID: 31159845)
Blood. 2017 Apr 13;129(15):2103-2110. (PMID: 28179280)
Cell. 2018 Mar 22;173(1):90-103.e19. (PMID: 29551269)
Sci Rep. 2020 Dec 28;10(1):22393. (PMID: 33372184)
Cells. 2022 Oct 14;11(20):. (PMID: 36291092)
Cell. 2016 Sep 22;167(1):219-232.e14. (PMID: 27662090)
Blood Adv. 2018 Mar 27;2(6):597-606. (PMID: 29545255)
Trends Genet. 2020 Aug;36(8):563-576. (PMID: 32534791)
Trends Genet. 2018 Dec;34(12):927-940. (PMID: 30287096)
معلومات مُعتمدة: R01 CA265726 United States CA NCI NIH HHS; T32 HL007574 United States HL NHLBI NIH HHS; K99 HL163805 United States HL NHLBI NIH HHS; RM1 HG009490 United States HG NHGRI NIH HHS; R35 GM118062 United States GM NIGMS NIH HHS; U01 AI142756 United States AI NIAID NIH HHS; R01 HL146500 United States HL NHLBI NIH HHS; R01 DK103794 United States DK NIDDK NIH HHS; U54 DK106829 United States DK NIDDK NIH HHS
فهرسة مساهمة: Keywords: base editing; differentiation; functional screens; genome engineering; hematopoiesis; hematopoietic stem cell; primary cells; single-cell genomics
تواريخ الأحداث: Date Created: 20230503 Date Completed: 20230531 Latest Revision: 20240619
رمز التحديث: 20240619
مُعرف محوري في PubMed: PMC10225359
DOI: 10.1016/j.cell.2023.03.035
PMID: 37137305
قاعدة البيانات: MEDLINE