دورية أكاديمية

Has the Rio Doce "time bomb" been defused? Using a weight-of-evidence approach to determine sediment quality.

التفاصيل البيبلوغرافية
العنوان: Has the Rio Doce "time bomb" been defused? Using a weight-of-evidence approach to determine sediment quality.
المؤلفون: Abessa D; São Paulo State University-UNESP, Praça Infante Dom Henrique, São Vicente, São Paulo, Brazil., Burton GA Jr; School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA., Cervi EC; WSP Golder, Belo Horizonte, Brazil., Simpson SL; CSIRO Environment, Sydney, New South Wales, Australia., Stubblefield W; Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, Oregon, USA., Ribeiro CC; São Paulo State University-UNESP, Praça Infante Dom Henrique, São Vicente, São Paulo, Brazil., Cruz ACF; São Paulo State University-UNESP, Praça Infante Dom Henrique, São Vicente, São Paulo, Brazil., Kruger G; Hydrobiology, Vitória, Espírito Santo, Brazil., Smith R; Hydrobiology, Vitória, Espírito Santo, Brazil.
المصدر: Integrated environmental assessment and management [Integr Environ Assess Manag] 2024 Jan; Vol. 20 (1), pp. 148-158. Date of Electronic Publication: 2023 Jun 07.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Society of Environmental Toxicology and Chemistry (SETAC) Country of Publication: United States NLM ID: 101234521 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1551-3793 (Electronic) Linking ISSN: 15513777 NLM ISO Abbreviation: Integr Environ Assess Manag Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Pensacola, FL : Society of Environmental Toxicology and Chemistry (SETAC), c2005-
مواضيع طبية MeSH: Water Pollutants, Chemical*/toxicity , Water Pollutants, Chemical*/analysis , Trace Elements*, Environmental Monitoring ; Metals/toxicity ; Metals/analysis ; Iron ; Brazil
مستخلص: The Fundão mine tailings dam rupture of 2015, in the Rio Doce basin, Brazil, resulted in the deposition of tailings downstream of the dam. It has yet to be determined if metals associated with the tailings have contributed toxicity to organisms, burying a time bomb that could be ticking. Currently the data on toxicity to benthic and aquatic organisms have not been assessed sufficiently to allow an informed assessment using an approach based on weight-of-evidence. This study was conducted to ascertain if sediments at "hot spots" that received Fundão tailings reflected elevated concentrations of metals and if these concentrations were sufficient to result in toxicity to freshwater organisms. The lines-of-evidence considered included assessing metals concentrations in relation to sediment quality criteria, establishing biogeochemical characterizations, completing an evaluation of potential metal release upon resuspension to provide information on bioavailability, and identifying acute and chronic toxicity effects using sensitive native species for waters (water flea, Daphnia similis) and sediments (burrowing midge larvae, Chironomus sancticaroli). Only porewater concentrations of iron and manganese exceeded Brazilian surface water criteria, whereas most trace elements exhibited no enrichment or elevated environmental indexes. The concentrations of bioavailable metals were assessed to be low, and metal concentrations did not increase in the overlying water upon resuspension; rather, they decreased through time. Toxicity testing in resuspended waters and bulk sediments resulted in no acute or chronic toxicity to either benthic or aquatic species. The low metal bioavailability and absence of toxicity of the tailings-enriched sediments was attributed to the strong binding and rapid removal of potentially toxic metal ions caused by oxyhydroxides and particles in the presence of iron-rich particulates. The findings of these sediment hot-spot studies indicate the Fundão dam release of tailings more than six years ago is not causing the current release of toxic concentrations of metals into the freshwaters of the Rio Doce. Integr Environ Assess Manag 2024;20:148-158. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
(© 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).)
References: Almeida, C. A., de Oliveira, A. F., Pacheco, A. A., Lopes, R. P., Neves, A. A., & Queiroz, M. E. L. R. (2018). Characterization and evaluation of sorption potential of the iron mine waste after Samarco dam disaster in Rio Doce basin-Brazil. Chemosphere, 209, 411-420.
American Society for Testing and Materials (ASTM). (2005). Standard test method for measuring the toxicity of sediment-associated contaminants with freshwater invertebrates (E-1706-05).
Associação Brasileira de Normas Técnicas (ABNT). (2007). Ecotoxicologia aquáticaToxicidade em sedimentos-Método de ensaio com Hyalella spp. (Amphipoda) (NBR 15470).
Brazil. (2005). CONAMA resolution 357, of March 17, 2005. National Council for the Environment. Accessed August 10, 2022. Available at: www.mma.gov.br/port/conama/res/res05/res35705.pdf.
Bernegossi, A. C., Cardoso, B. N. P., Felipe, M. C., Silva, M. R. L., & Corbi, J. L. (2019). Chironomus sancticaroli generation test: a new methodology with a Brazilian endemic insect. MethodsX, 6, 92-97. https://doi.org/10.1016/j.mex.2018.12.013.
Burton, Jr., G. A., Hudson, M., Huntsman, P., Carbonaro, R., Rader, K. J., Waeterschoot, H., Baken, S., & Garman, E. R. (2019). Weight-of-evidence approach for assessing removal of metals from the water column for chronic environmental hazard classification. Environmental Toxicology and Chemistry, 38, 1839-1849. https://doi.org/10.1002/etc.4470.
Cervi, E. C., Hudson, M., Rentschler, A., & Burton, Jr., G. A. (2019). Metal toxicity during short-term sediment resuspension and redeposition in a tropical reservoir. Environmental Toxicology and Chemistry, 38(7), 1476-1485. https://doi.org/10.1002/etc.4434.
Duarte, E. B., Neves, M. A., de Oliveira, F. B., Martins, M. E., de Oliveira, C. H. R., Burak, D. L., Orlando, M. T. D. A., & Rangel, C. V. G. T. (2021). Trace metals in Rio Doce sediments before and after the collapse of the Fundão iron ore tailing dam, Southeastern Brazil. Chemosphere, 262, 127879. https://doi.org/10.1016/j.chemosphere.2020.127879.
Environment Canada. (1997). Biological test method: test for survival and growth in sediment using larvae of freshwater midges (Chironomus tentans or Chironomus riparius) (EPS 1/RM/32).
Escobar, H. (2015). Mud tsunami wreaks ecological havoc in Brazil. Science, 350(6265), 1138-1139. https://doi.org/10.1126/science.350.6265.1138.
Ferreira, F. F., Freitas, M. B. D., Szinwelski, N., Vicente, N., Medeiros, L. C. C., Schaefer, C. E. G. R., Dergam, J. A., & Sperber, C. F. (2020). Impacts of the Samarco tailing dam collapse on metals and arsenic concentration in freshwater fish muscle from Doce River, southeastern Brazil. Integrated Environmental Assessment and Management, 16(5), 622-630. https://doi.org/10.1002/ieam.4289.
Fetters, K. J., Costello, D. M., Hammerschmidt, C. R., & Burton, Jr., G. A. (2016). Toxicological effects of short-term resuspension of metal contaminated freshwater and marine sediments. Environmental Toxicology and Chemistry, 35, 676-686. https://doi.org/10.1002/etc.3225.
Fundação RENOVA. (2021). Programa de monitoramento quali-quantitativo sistemático de água e sedimentos-PMQQS: revisão bi-anual do PMQQS. Retrieved July 23, 2022, from: https://www.fundacaorenova.org/wp-content/uploads/2021/12/pmqqs_revisaobianual_revnt78_maio21.pdf.
Gabriel, F. A., Ferreira, A. D., Queiroz, H. M., Vasconcelos, A. L. S., Ferreira, T.O., & Bernardino, A. F. (2021). Long-term contamination of the Rio Doce estuary as a result of Brazil's largest environmental disaster. Perspectives in Ecology and Conservation, 19(4), 417-428. https://doi.org/10.1016/j.pecon.2021.09.001.
Gastão, F. G. C., Lima-Júnior, S. B., Leal, C. A., & Maia, L. P. (2022). Hidrologia da Bacia Hidrográfica do Rio Doce no Estado do Espírito Santo. Brasil. Revista de Geomorfologia, 3(2), 1-19. https://doi.org/10.48025/ISSN2675-6900.v3n2.2022.159.
Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Paleontologia Electronica, 1(4), 1-9.
Hansen, D. J., DiToro, D. M., Berry, W. J., Boothman, W. S., Burgess, R. M., Ankley, G. T., Mount, D. R., McGrath, J. A., DeRosa, L. D., Bell, H. E., Reiley, M. C., & Zarba, C. S. (2005). Procedures for the derivation of equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms: Metal mixtures (cadmium, copper, lead, nickel, silver, and zinc) (EPA/600/R-02/011). USEPA Office of Research and Development.
Hasan, A. B., Kabir, S., Selim Reza, A. H. M., Zaman, M. N., Ahsan, A., & Rashid, M. (2013). Enrichment factor and geo-accumulation index of trace metals in sediments of the ship breaking area of Sitakund Upazilla (Bhatiary-Kumira), Chittagong, Bangladesh. Journal of Geochemical Exploration, 125, 130-137. https://doi.org/10.1016/j.gexplo.2012.12.002.
Hatje, V., Pedreira, R. M. A., Rezende, C. E., Schettini, C. A. F., Souza, G. C., Marin, D. C., & Hackspacher, P. C. (2017). The environmental impacts of one of the largest tailing dam failures worldwide. Scientific Reports, 7(1), 1-13. https://doi.org/10.1038/s41598-017-11143-x.
Huntsman, P., Beaudoin, R., Rader, K., Carbonaro, R., Burton, Jr., G. A., Hudson, M., Baken, S., Garman, E., & Waeterschoot, H. (2019). Method development for determining the removal of metals from the water column under transformation/dissolution conditions for chronic hazard classification. Environmental Toxicology and Chemistry, 38, 2032-2042. https://doi.org/10.1002/etc.4471.
Instituto Brasileiro do Meio Ambiente e Recursos Naturais Renováveis (IBAMA). (2015). Laudo Técnico Preliminar-Impactos ambientais decorrentes do desastre envolvendo o rompimento da barragem de Fundão, em Mariana, Minas Gerais (38 pp.). Diretoria de Proteção Ambiental (DIPRO) e Coordenação Geral de Emergências Ambientais (CGEMA). Retrieved July 23, 2022, from: http://www.ibama.gov.br/phocadownload/barragemdefundao/laudos/laudo_tecnico_preliminar_Ibama.pdf.
Instituto Mineiro de Gestão das Águas (IGAM). (2020). Encarte especial sobre a qualidade das águas do Rio Doce após 5 anos do rompimento de Barragem de Fundão-2015/2020. Retrieved July 23, 2022, from: http://www3.ana.gov.br/portal/ANA/sala-de-situacao/rio-doce/documentos-relacionados/encarte-qualidade-da-gua-do-rio-doce-dois-anos-apos-rompimento-de-barragem-de-fundao-1.pdf.
Instituto Mineiro de Gestão das Águas (IGAM). (2021). Tabelas de Resultados. Retrieved July 23, 2022, from: http://www.igam.mg.gov.br/component/content/article/16-duvidas/2493--tabelas-de-resultados.
Jaagumagi, R. (1993). Development of the Ontario provincial sediment quality guidelines for arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, and zinc. Water Resources Branch, Ontario Ministry of the Environment.
MacDonald, D. D., Ingersoll, C. G., & Berger, T. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39, 20-31.
Merçon, J., Cabral, D. S., Teixeira, B. C., Pereira, T. M., Bona, A. M., Armini, C. V. L., Agostinho, S. G. D. N., Vasconcelos, C. M., & Gomes, L. C. (2022). Seasonality effects on the metal concentration and biochemical changes in Astyanax lacustris (Teleostei: Characiformes) from Doce River after the collapse of the Fundão dam in Mariana, Brazil. Environmental Toxicology and Pharmacology, 89, 103777. https://doi.org/10.1016/j.etap.2021.103777.
Morgenstern, N. R., Vick, S. G., Viotti, C. B., & Watts, B. D. (2016). Fundão Tailings Dam review panel: Report on the immediate causes of the failure of the Fundão Dam. Retrieved August 8, 2022, from: https://www.resolutionmineeis.us/sites/default/files/references/fundao-2016.pdf.
Müller, G. (1979). Schwermetalle in den sedimenten des Rheins-veraenderungen seit 1971. Umschav, 79, 133-149.
Nascimento, R. L., Alves, P. R., Di Domenico, M., Braga, A. A., Paiva, P. C., Orlando, M. T. D. A., & Longo, L. L. (2022). The Fundão dam failure: Iron ore tailing impact on marine benthic macrofauna. Science of the Total Environment, 838, 156205. https://doi.org/10.1016/j.scitotenv.2022.156205.
Nelson, D. W., & Sommers, L. (1996). Chapter 34. Total carbon, organic carbon, and organic matter. In J. M. Bigham (Ed.), Methods of soil analysis. Part 3: Chemical methods, SSSA Book Series No. 5 (pp. 1001-1006). Society of America and American Society of Agronomy.
Nogueira, L. B., Sousa, S. M., Santos, C. G. L., Araújo, G. S., Oliveira, L., & Nogueira, K. O. P. C. (2021). Water quality from Gualaxo do Norte and Carmo Rivers (Minas Gerais, Brazil) after the Fundão dam failure. Anuário do Instituto de Geociências, 44, 37175. https://doi.org/10.11137/1982-3908_2021_44_37175.
Organisation for Economic Co-operation and Development (OECD). (2004a). Test No. 218: Sediment-water chironomid toxicity using spiked sediment. OECD guidelines for the testing of chemicals, section 2: Effects on biotic systems (p. 21).
Organisation for Economic Co-operation and Development (OECD). (2004b). Test 219: Sediment-water chironomid toxicity using spiked water. OECD guidelines for the testing of chemicals, section 2: Effects on biotic systems (p. 21).
Passos, L. S., Gnocchi, K. G., Pereira, T. M., Coppo, G. C., Cabral, D. S., & Gomes, L. C. (2020). Is the Doce River elutriate or its water toxic to Astyanax lacustris (Teleostei: Characidae) three years after the Samarco mining dam collapse? Science of the Total Environment, 736, 139644. https://doi.org/10.1016/j.scitotenv.2020.139644.
Persaud, D., Jaaguamagi, R., & Hayton, A. (1996). Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of the Environment.
Queiroz, H. M., Nobrega, G. N., Ferreira, T. O., Almeida, L. S., Romero, T. B., Santaella, S. T., Bernardino, A. F., & Otero, X. L. (2018). The Samarco mine tailing disaster: a possible time-bomb for heavy metal contamination. Science of the Total Environment, 637-638, 498-506.
Rodrigues, A. S. L., Malafaia, G., Costa, A. T., & Nalini Júnior, H. A. (2014). Iron ore mining promotes iron enrichment in sediments of the Gualaxo do Norte River basin, Minas Gerais State, Brazil. Environmental Earth Sciences, 71(9), 4177-4186. https://doi.org/10.1007/s12665-013-2808-y.
Santolin, C. V. A., Ciminelli, V. S. T., Nascentes, C. C., & Windmöller, C. C. (2015). Distribution and environmental impact evaluation of metals in sediments from the Doce River Basin, Brazil. Environmental Earth Sciences, 74(2), 1235-1248. https://doi.org/10.1007/s12665-015-4115-2.
Seeberg-Elverfeldt, J., Schlüter, M., Feseker, T., & Kölling, M. (2005). Rhizon sampling of porewaters near the sediment-water interface of aquatic systems. Limnology and Oceanography: Methods, 3, 361-371.
Simpson, S. L., Batley, G. E., & Chariton, A. A. (2013). Revision of the ANZECC/ARMCANZ sediment quality guidelines (CSIRO Land and Water Report 8/07). CSIRO Land and Water.
Taylor, S. R. (1964). Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta, 28, 1273-1285. https://doi.org/10.1016/0016-7037(64)90129-2.
US Environmental Protection Agency (USEPA). (1996). Metals concentration was determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES; Perkin Elmer Optima 8000 Series) using USEPA method 3050B.
US Environmental Protection Agency (USEPA). (2000). Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates (EPA 600-99/064, 2 ed.).
US Environmental Protection Agency (USEPA). (2005). Procedures for the derivation of equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms: Metal mixtures (cadmium, copper, lead, nickel, silver, and zinc) (EPA-600-R-02-01). Office of Research and Development.
Vergilio, C. S., Lacerda, D., Souza, T. S., Oliveira, B. C. V., Fioresi, V. S., Souza, V. V., Rodrigues, G. R., Barbosa, M. K. A. M., Sartori, E., Rangel, T. P., Almeida, D. Q. R., Almeida, M. G., Thompson, F., & Rezende, C. E. (2021). Immediate and long-term impacts of one of the worst mining tailing dam failure worldwide (Bento Rodrigues, Minas Gerais, Brazil). Science of the Total Environment, 756, 143697. https://doi.org/10.1016/j.scitotenv.2020.143697.
Vicq, R., Matschullat, J., Leite, M. G. P., Nalini Junior, H. A., & Mendonça, F. P. C. (2015). Iron Quadrangle stream sediments, Brazil: Geochemical maps and reference values. Environmental Earth Sciences, 74(5), 4407-4417.
Viveiros, W. (2012). Chironomus sancticaroli-do cultivo em laboratório ao ensaio ecotoxicológico com amostras ambientais de sedimento [Dissertação, Mestrado em Tecnologia Nuclear-Materiais, IPEN/USP, São Paulo]. Retrieved July 23, 2022, from: https://www.teses.usp.br/teses/disponiveis/85/85134/tde-04062012-151653/publico/2012ViveirosChironomus.pdf.
Yamamoto, F. Y., Eufrásio, G. F., Nascimento, L. S., Fernandes, G. M., Santos, M. P., Kim, B. S. M., Figueira, R. C. L., Cavalcante, R. M., Grassi, M. T., & Abessa, D. M. S. (2022). Chemical data of contaminants in water and sediments from the Doce River four years after the mining dam collapse disaster. Data in Brief 45, 108715. https://doi.org/10.1016/j.dib.2022.108715.
Yamamoto, F. Y., Souza, A. T. C., Paula, V. C. S., Beverari, I., Garcia, J. R. E., Padial, A. A., & Abessa, D. M. S. (2022). From molecular endpoints to modeling longer-term effects in fish embryos exposed to the elutriate from Doce River. Science of the Total Environment, 846, 157332. https://doi.org/10.1016/j.scitotenv.2022.157332.
معلومات مُعتمدة: BHP
فهرسة مساهمة: Keywords: Bioavailability; Chemistry; Environmental risk assessment; Mining; Tailings dam failure
المشرفين على المادة: 0 (Water Pollutants, Chemical)
0 (Metals)
E1UOL152H7 (Iron)
0 (Trace Elements)
تواريخ الأحداث: Date Created: 20230511 Date Completed: 20231227 Latest Revision: 20231227
رمز التحديث: 20231227
DOI: 10.1002/ieam.4785
PMID: 37166226
قاعدة البيانات: MEDLINE