دورية أكاديمية

Image registration and mutual thresholding enable low interimage variability across dynamic MRI measurements of supraclavicular brown adipose tissue during mild cold exposure.

التفاصيل البيبلوغرافية
العنوان: Image registration and mutual thresholding enable low interimage variability across dynamic MRI measurements of supraclavicular brown adipose tissue during mild cold exposure.
المؤلفون: Sardjoe Mishre ASD; Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands.; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.; Department of Radiology, C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, the Netherlands., Martinez-Tellez B; Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands.; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands., Straat ME; Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands.; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands., Boon MR; Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands.; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands., Dzyubachyk O; Department of Radiology, Division of Image Processing, Leiden University Medical Center, Leiden, the Netherlands.; Department of Cell and Chemical Biology, Electron Microscopy Section, Leiden University Medical Center, Leiden, the Netherlands., Webb AG; Department of Radiology, C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, the Netherlands., Rensen PCN; Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands.; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands., Kan HE; Department of Radiology, C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, the Netherlands.
المصدر: Magnetic resonance in medicine [Magn Reson Med] 2023 Oct; Vol. 90 (4), pp. 1316-1327. Date of Electronic Publication: 2023 May 15.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: United States NLM ID: 8505245 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1522-2594 (Electronic) Linking ISSN: 07403194 NLM ISO Abbreviation: Magn Reson Med Subsets: MEDLINE
أسماء مطبوعة: Publication: 1999- : New York, NY : Wiley
Original Publication: San Diego : Academic Press,
مواضيع طبية MeSH: Adipose Tissue, Brown*/diagnostic imaging , Adipose Tissue, Brown*/metabolism , Magnetic Resonance Imaging*/methods, Humans ; Young Adult ; Adult
مستخلص: Purpose: Activated brown adipose tissue (BAT) enhances lipid catabolism and improves cardiometabolic health. Quantitative MRI of the fat fraction (FF) of supraclavicular BAT (scBAT) is a promising noninvasive measure to assess BAT activity but suffers from high scan variability. We aimed to test the effects of coregistration and mutual thresholding on the scan variability in a fast (1 min) time-resolution MRI protocol for assessing scBAT FF changes during cold exposure.
Methods: Ten volunteers (age 24.8 ± 3.0 years; body mass index 21.2 ± 2.1 kg/m 2 ) were scanned during thermoneutrality (32°C; 10 min) and mild cold exposure (18°C; 60 min) using a 12-point gradient-echo sequence (70 consecutive scans with breath-holds, 1.03 min per dynamic). Dynamics were coregistered to the first thermoneutral scan, which enabled drawing of single regions of interest in the scBAT depot. Voxel-wise FF changes were calculated at each time point and averaged across regions of interest. We applied mutual FF thresholding, in which voxels were included if their FF was greater than 30% FF in the reference scan and the registered dynamic. The efficacy of the coregistration was determined by using a moving average and comparing the mean squared error of residuals between registered and nonregistered data. Registered scBAT ΔFF was compared with single-scan thresholding using the moving average method.
Results: Registered scBAT ΔFF had lower mean square error values than nonregistered data (0.07 ± 0.05% vs. 0.16 ± 0.14%; p < 0.05), and mutual thresholding reduced the scBAT ΔFF variability by 30%.
Conclusion: We demonstrate that coregistration and mutual thresholding improve stability of the data 2-fold, enabling assessment of small changes in FF following cold exposure.
(© 2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.)
References: Blondin DP, Frisch F, Phoenix S, et al. Inhibition of intracellular triglyceride lipolysis suppresses cold-induced brown adipose tissue metabolism and increases shivering in humans. Cell Metab. 2017;25:438-447. doi:10.1016/j.cmet.2016.12.005.
Bartelt A, Bruns OT, Reimer R, et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med. 2011;17:200-206. doi:10.1038/nm.2297.
Oikonomou EK, Antoniades C. The role of adipose tissue in cardiovascular health and disease. Nat Rev Cardiol. 2019;16:83-99. doi:10.1038/s41569-018-0097-6.
Becher T, Palanisamy S, Kramer DJ, et al. Brown adipose tissue is associated with cardiometabolic health. Nat Med. 2021;27:58-65. doi:10.1038/s41591-020-1126-7.
Van Der Lans AAJJ, Hoeks J, Brans B, et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Investig. 2013;123:3395-3403. doi:10.1172/JCI68993.
Yoneshiro T, Aita S, Matsushita M, et al. Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest. 2013;123:3404-3408. doi:10.1172/JCI67803.
Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84:277-359. doi:10.1152/physrev.00015.2003.
Straat ME, Hoekx CA, van Velden FHP, et al. Stimulation of the beta-2-adrenergic receptor with salbutamol activates human brown adipose tissue. Cell Rep Med. 2023;4:100942. doi:10.1016/j.xcrm.2023.100942.
Chen KY, Cypess AM, Laughlin MR, et al. Brown adipose reporting criteria in imaging STudies (BARCIST 1.0): recommendations for standardized FDG-PET/CT experiments in humans. Cell Metab. 2016;24:210-222. doi:10.1016/j.cmet.2016.07.014.
Schilperoort M, Hoeke G, Kooijman S, Rensen PCN. Relevance of lipid metabolism for brown fat visualization and quantification. Curr Opin Lipidol. 2016;27:242-248. doi:10.1097/MOL.0000000000000296.
Karampinos DC, Weidlich D, Wu M, Hu HH, Franz D. Techniques and applications of magnetic resonance imaging for studying Brown adipose tissue morphometry and function. Handb Exp Pharmacol. 2019;251:299-324. doi:10.1007/164_2018_158.
Wu M, Junker D, Branca RT, Karampinos DC. Magnetic resonance imaging techniques for brown adipose tissue detection. Front Endocrinol (Lausanne). 2020;11:421. doi:10.3389/FENDO.2020.00421/FULL.
Oreskovich S, Ong F, Ahmed B, et al. Magnetic resonance imaging reveals human brown adipose tissue is rapidly activated in response to cold. J Endocr Soc. 2019;14:2374-2384. doi:10.1210/js.2019-00309.
Deng J, Neff LM, Rubert NC, et al. MRI characterization of brown adipose tissue under thermal challenges in normal weight, overweight, and obese young men. J Magn Reson Imaging. 2018;47:936-947. doi:10.1002/jmri.25836.
Coolbaugh CL, Damon BM, Bush EC, Welch EB, Towse TF. Cold exposure induces dynamic, heterogeneous alterations in human brown adipose tissue lipid content. Sci Rep. 2019;9:13600. doi:10.1038/s41598-019-49936-x.
Lundström E, Strand R, Johansson L, Bergsten P, Ahlström H, Kullberg J. Magnetic resonance imaging cooling-reheating protocol indicates decreased fat fraction via lipid consumption in suspected brown adipose tissue. PLoS One. 2015;10:e0126705. doi:10.1371/journal.pone.0126705.
Gashi G, Madoerin P, Maushart CI, et al. MRI characteristics of supraclavicular brown adipose tissue in relation to cold-induced thermogenesis in healthy human adults. J Magn Reson Imaging. 2019;50:1160-1168. doi:10.1002/jmri.26733.
Stahl V, Maier F, Freitag MT, et al. In vivo assessment of cold stimulation effects on the fat fraction of brown adipose tissue using DIXON MRI. J Magn Reson Imaging. 2017;45:369-380. doi:10.1002/jmri.25364.
Reber J, Willershäuser M, Karlas A, et al. Non-invasive measurement of brown fat metabolism based on optoacoustic imaging of hemoglobin gradients. Cell Metab. 2018;27:689-701.e4. doi:10.1016/j.cmet.2018.02.002.
Franz D, Diefenbach MN, Treibel F, et al. Differentiating supraclavicular from gluteal adipose tissue based on simultaneous PDFF and T2*$$ {\mathrm{T}}_2^{\ast } $$ mapping using a 20-echo gradient-echo acquisition. J Magn Reson Imaging. 2019;50(20):424-434. doi:10.1002/jmri.26661.
Hu HH, Yokoo T, Bashir MR, et al. Linearity and bias of proton density fat fraction as a quantitative imaging biomarker: a multicenter, multiplatform, multivendor phantom study. Radiology. 2021;298:640-651. doi:10.1148/RADIOL.2021202912/ASSET/IMAGES/LARGE/RADIOL.2021202912.TBL6.JPEG.
Wang X, Hernando D, Reeder SB. Sensitivity of chemical shift-encoded fat quantification to calibration of fat MR Spectrum. Magn Reson Med. 2016;75:845-851. doi:10.1002/MRM.25681.
Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW. Elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging. 2010;29:196-205. doi:10.1109/TMI.2009.2035616.
Abreu-Vieira G, Sardjoe Mishre ASD, Burakiewicz J, et al. Human brown adipose tissue estimated with magnetic resonance imaging undergoes changes in composition after cold exposure: an in vivo MRI study in healthy volunteers. Front Endocrinol (Lausanne). 2020;10:898. doi:10.3389/fendo.2019.00898.
Wu M, Mulder HT, Baron P, et al. Correction of motion-induced susceptibility artifacts and B0 drift during proton resonance frequency shift-based MR thermometry in the pelvis with background field removal methods. Magn Reson Med. 2020;84:2495-2511. doi:10.1002/MRM.28302.
Shcherbakova Y, van den Berg CAT, Moonen CTW, Bartels LW. Investigation of the influence of B0 drift on the performance of the PLANET method and an algorithm for drift correction. Magn Reson Med. 2019;82:1725-1740. doi:10.1002/MRM.27860.
Hernandez D, Kim KS, Michel E, Lee SY. Correction of B0 drift effects in magnetic resonance thermometry using magnetic field monitoring technique. Concepts Magn Reson Part B. 2016;46B:81-89. doi:10.1002/CMR.B.21324.
Kadoya N, Fujita Y, Katsuta Y, et al. Evaluation of various deformable image registration algorithms for thoracic images. J Radiat Res. 2014;55:175-182. doi:10.1093/JRR/RRT093.
McCallister A, Zhang L, Burant A, Katz L, Branca RT. A pilot study on the correlation between fat fraction values and glucose uptake values in supraclavicular fat by simultaneous PET/MRI. Magn Reson Med. 2017;78:1922-1932. doi:10.1002/mrm.26589.
Straat ME, Jurado-Fasoli L, Ying Z, et al. Cold exposure induces dynamic changes in circulating triacylglycerol species, which is dependent on intracellular lipolysis: a randomized cross-over trial. SSRN https://papers.ssrn.com/sol3/papers.cfm?abstract&#95;id=4163695 Accessed July 20, 2022.
فهرسة مساهمة: Keywords: brown adipose tissue; cold exposure; fat fraction; magnetic resonance imaging
تواريخ الأحداث: Date Created: 20230515 Date Completed: 20230731 Latest Revision: 20230801
رمز التحديث: 20230801
DOI: 10.1002/mrm.29707
PMID: 37183785
قاعدة البيانات: MEDLINE
الوصف
تدمد:1522-2594
DOI:10.1002/mrm.29707