دورية أكاديمية

Spatial variability of trace gases (NO 2 , O 3 and CO) over Indian region during 2020 and 2021 COVID-19 lockdowns.

التفاصيل البيبلوغرافية
العنوان: Spatial variability of trace gases (NO 2 , O 3 and CO) over Indian region during 2020 and 2021 COVID-19 lockdowns.
المؤلفون: Vignesh VG; Indian Institute of Science Education and Research (IISER), Tirupati, India., Jain CD; National Atmospheric Research Laboratory (NARL), Gadanki, India. chaithanya.jain@narl.gov.in., Saikranthi K; Indian Institute of Science Education and Research (IISER), Tirupati, India., Ratnam MV; National Atmospheric Research Laboratory (NARL), Gadanki, India.
المصدر: Environmental monitoring and assessment [Environ Monit Assess] 2023 May 16; Vol. 195 (6), pp. 680. Date of Electronic Publication: 2023 May 16.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Netherlands NLM ID: 8508350 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2959 (Electronic) Linking ISSN: 01676369 NLM ISO Abbreviation: Environ Monit Assess Subsets: MEDLINE
أسماء مطبوعة: Publication: 1998- : Dordrecht : Springer
Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-
مواضيع طبية MeSH: COVID-19*/epidemiology , Air Pollution*/analysis , Air Pollutants*/analysis , Ozone*/analysis , Environmental Pollutants*/analysis, Humans ; Nitrogen Dioxide/analysis ; Environmental Monitoring/methods ; Communicable Disease Control ; Particulate Matter/analysis
مستخلص: COVID-19 lockdown has given us an opportunity to investigate the pollutant concentrations in response to the restricted anthropogenic activities. The atmospheric concentration levels of nitrogen dioxide (NO 2 ), carbon monoxide (CO) and ozone (O 3 ) have been analysed for the periods during the first wave of COVID-19 lockdown in 2020 (25th March-31st May 2020) and during the partial lockdowns due to second wave in 2021 (25th March-15th June 2021) across India. The trace gas measurements from Ozone Monitoring Instrument (OMI) and Atmosphere InfraRed Sounder (AIRS) satellites have been used. An overall decrease in the concentration of O 3 (5-10%) and NO 2 (20-40%) have been observed during the 2020 lockdown when compared with business as usual (BAU) period in 2019, 2018 and 2017. However, the CO concentration increased up to 10-25% especially in the central-west region. O 3 and NO 2 slightly increased or had no change in 2021 lockdown when compared with the BAU period, but CO showed a mixed variation prominently influenced by the biomass burning/forest fire activities. The changes in trace gas levels during 2020 lockdown have been predominantly due to the reduction in the anthropogenic activities, whereas in 2021, the changes have been mostly due to natural factors like meteorology and long-range transport, as the emission levels have been similar to that of BAU. Later phases of 2021 lockdown saw the dominant effect of rainfall events resulting in washout of pollutants. This study reveals that partial or local lockdowns have very less impact on reducing pollution levels on a regional scale as natural factors like atmospheric long-range transport and meteorology play deciding roles on their concentration levels.
(© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
References: Alladi, H., Ratnam, M. V., & Jain, C. (2021). Influence of background dynamics on the vertical distribution of trace gases (CO/WV/O3) in the UTLS region during COVID-19 lockdown over India. Atmospheric Research, 265, 105876. https://doi.org/10.1016/j.atmosres.2021.105876. (PMID: 10.1016/j.atmosres.2021.105876)
Bagwaiya, C. (2021). COVID-19 second wave: These 11 states in India are under complete lockdown. The Bridge Chronicle. https://www.thebridgechronicle.com/news/nation/these-11-states-in-india-are-under-complete-lockdown.
Basha, G., Ratnam, M. V., Viswanadhapalli, Y., Chakraborty, R., Babu, S. R., & Kishore, P. (2022). Impact of COVID-19 lockdown on the atmospheric boundary layer and instability process over Indian region. Science of The Total Environment, 832, 154995. https://doi.org/10.1016/j.scitotenv.2022.154995. (PMID: 10.1016/j.scitotenv.2022.154995)
Biswal, A., Singh, V., Singh, S., Kesarkar, A.P., Ravindra, K., Sokhi, R.S., Chipperfield, M.P., Dhomse, S.S., Pope, R.J., Singh, T., & Mor, S. (2021). COVID-19 lockdown-induced changes in NO 2 levels across India observed by multi-satellite and surface observations. Atmospheric Chemistry and Physics 21, 5235–5251. https://doi.org/10.5194/acp-21-5235-2021.
Chen, L.-W.A., Chien, L.-C., Li, Y., & Lin, G. (2020). Nonuniform impacts of COVID-19 lockdown on air quality over the United States. Science of The Total Environment, 745, 141105. https://doi.org/10.1016/j.scitotenv.2020.141105. (PMID: 10.1016/j.scitotenv.2020.141105)
Cichowicz, R., & Stelegowski, A. (2019). Hourly profiles of air pollution variation in selected cities, towns and villages in Poland. E3S Web of Conferences, 101, 03003. https://doi.org/10.1051/e3sconf/201910103003. (PMID: 10.1051/e3sconf/201910103003)
Giglio, L., Schroeder, W., & Justice, C. (2016). The collection 6 MODIS active fire detection algorithm and fire products. Remote Sensing of Environment, 178, 31–41. https://doi.org/10.1016/j.rse.2016.02.054. (PMID: 10.1016/j.rse.2016.02.054)
Gopikrishnan, G. S., Kuttippurath, J., Raj, S., Singh, A., & Abbhishek, K. (2022). Air quality during the COVID–19 lockdown and unlock periods in India analyzed using satellite and ground-based measurements. Environmental Processes, 9, 28. https://doi.org/10.1007/s40710-022-00585-9. (PMID: 10.1007/s40710-022-00585-9)
Habibi, H., Awal, R., Fares, A., & Ghahremannejad, M. (2020). COVID-19 and the Improvement of the global air quality: The bright side of a pandemic. Atmosphere, 11, 1279. https://doi.org/10.3390/atmos11121279. (PMID: 10.3390/atmos11121279)
Hashim, B. M., Al-Naseri, S. K., Al-Maliki, A., & Al-Ansari, N., (2021). Impact of COVID-19 lockdown on NO2, O3, PM2.5 and PM10 concentrations and assessing air quality changes in Baghdad, Iraq. Science of The Total Environment, 754, 141978. https://doi.org/10.1016/j.scitotenv.2020.141978.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., … Thépaut, J. (2020). The ERA5 global reanalysis. Q.J.R. Meteorol. Soc., 146, 1999–2049. https://doi.org/10.1002/qj.3803. (PMID: 10.1002/qj.3803)
Indian Industry, C., 2022. State Government Notifications, COVID 19 Interventions [WWW Document]. URL https://www.ciicovid19update.in/state-govt-notifications.html (accessed 8.15.22).
Jain, S., & Sharma, T. (2020). Social and travel lockdown impact considering coronavirus disease (COVID-19) on air quality in megacities of India: Present benefits, future challenges and way forward. Aerosol and Air Quality Research, 20, 1222–1236. https://doi.org/10.4209/aaqr.2020.04.0171. (PMID: 10.4209/aaqr.2020.04.0171)
Jain, C. D., Madhavan, B. L., Singh, V., Prasad, P., Sai Krishnaveni, A., Ravi Kiran, V., & VenkatRatnam, M. (2021). Phase-wise analysis of the COVID-19 lockdown impact on aerosol, radiation and trace gases and associated chemistry in a tropical rural environment. Environmental Research, 194, 110665. https://doi.org/10.1016/j.envres.2020.110665. (PMID: 10.1016/j.envres.2020.110665)
Karumuri, R. K., Dasari, H. P., Gandham, H., Viswanadhapalli, Y., Ratnam, M. V., & Hoteit, I. (2022). Impact of COVID-19 lockdown on the ambient air-pollutants over the Arabian Peninsula. Frontiers in Environmental Science, 10, 963145. https://doi.org/10.3389/fenvs.2022.963145. (PMID: 10.3389/fenvs.2022.963145)
Kerimray, A., Baimatova, N., Ibragimova, O. P., Bukenov, B., Kenessov, B., Plotitsyn, P., & Karaca, F. (2020). Assessing air quality changes in large cities during COVID-19 lockdowns: The impacts of traffic-free urban conditions in Almaty, Kazakhstan. Science of The Total Environment, 730, 139179. https://doi.org/10.1016/j.scitotenv.2020.139179. (PMID: 10.1016/j.scitotenv.2020.139179)
Kumar, S. U., Kumar, D. T., Christopher, B. P., & Doss, C. G. P. (2020). The rise and impact of COVID-19 in India. Frontiers in Medicine (lausanne), 7, 250. https://doi.org/10.3389/fmed.2020.00250. (PMID: 10.3389/fmed.2020.00250)
Lal, S., Sethuraman, V., Naja, M., Kuniyal, J. C., Mandal, T., Bhuyan, P., Kumari, K., Tripathi, S., Sarkar, U., Das, T., Swamy, Y., Gopal, K., & Gadhavi, H. (2020). Loss of crop yields in India due to surface ozone: An estimation based on a network of observations. Environmental Science and Pollution Research, 24, 20972–20981. (PMID: 10.1007/s11356-017-9729-3)
Lamsal, L. N., Krotkov, N. A., Marchenko, S. V., Joiner, J., Oman L., Vasilkov, A., Fisher, B., Qin, W., Yang E-S., Fasnacht, Z., Choi S., Leonard, P., & Haffner, D. (2022). OMI/Aura NO2 Tropospheric, Stratospheric & Total Columns MINDS 1-Orbit L2 Swath 13 km x 24 km, NASA Goddard Space Flight Center, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed: [Data Access Date], 10.5067/MEASURES/MINDS/DATA204.
Loew, A., Bell, W., Brocca, L., Bulgin, C. E., Burdanowitz, J., Calbet, X., Donner, R. V., Ghent, D., Gruber, A., Kaminski, T., Kinzel, J., Klepp, C., Lambert, J.-C., Schaepman-Strub, G., Schröder, M., & Verhoelst, T. (2017). Validation practices for satellite-based Earth observation data across communities: EO validation. Reviews of Geophysics, 55, 779–817. https://doi.org/10.1002/2017RG000562. (PMID: 10.1002/2017RG000562)
Menon, M., & Kohli, K. (2020). During a lockdown, why is the mining industry considered “Essential”? The wire. https://thewire.in/political-economy/lockdown-mining-steel-essential-regulatory-oversight.
MHA. (2020). Government of India COVID-19 lockdown guidelines- MHA, No.40–43/ 2020-DM-I (A). https://www.du.ac.in/du/uploads/PR_Consolidated%20Guideline%20of%20MHA_28032020%20(1)_1.PDF.
MoHFW. (2021). Annexure to Ministry of Health & Family Welfare (MoHFW) DO no. Z.28015/85/2021-DM. https://ndma.gov.in/sites/default/files/PDF/covid/MoHFWOrder-25.4.21.pdf.
Nakada, L. Y. K., & Urban, R. C. (2020). COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state. Brazil. Science of The Total Environment, 730, 139087. https://doi.org/10.1016/j.scitotenv.2020.139087. (PMID: 10.1016/j.scitotenv.2020.139087)
Pagano, T. S., Chahine, M. T., & Fetzer, E. J. (2010). The Atmospheric Infrared Sounder (AIRS) on the NASA Aqua Spacecraft: A general remote sensing tool for understanding atmospheric structure, dynamics, and composition, in: Picard, R.H., Schäfer, K., Comeron, A., van Weele, M. (Eds.), . Presented at the Remote Sensing, Toulouse, France, p. 78270B. https://doi.org/10.1117/12.865335.
Pai, D., Sridhar, L., Rajeevan, M., Sreejith, O. P., Satbhai, N. S., & Mukhopadhyay, B. (2014). Development of a new high spatial resolution (0.25° × 0.25°) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam 65, 1–18. https://doi.org/10.54302/mausam.v65i1.851.
Ratnam, M. V., Dasari, H. P., Karumuri, R., Viswanadhapalli, Y., Perumal, P., & Hoteit, I. (2021). Natural processes dominate the pollution levels during COVID-19 lockdown over India. Science and Reports, 11, 15110. https://doi.org/10.1038/s41598-021-94373-4. (PMID: 10.1038/s41598-021-94373-4)
Ratnam, M. V., Prasad, P., S T, A., & Hoteit, I., (2020). Effect of lockdown due to COVID-19 on the aerosol and trace gases spatial distribution over India and adjoining regions. Aerosol and Air Quality Research, 20. https://doi.org/10.4209/aaqr.2020.07.0397.
Rawat, P., & Naja, M. (2022). Remote sensing study of ozone, NO2, and CO: Some contrary effects of SARS-CoV-2 lockdown over India. Environmental Science and Pollution Research, 29, 22515–22530. https://doi.org/10.1007/s11356-021-17441-2. (PMID: 10.1007/s11356-021-17441-2)
Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics: From air pollution to climate change, Third (edition). John Wiley & Sons.
Selvam, S., Muthukumar, P., Venkatramanan, S., Roy, P. D., ManikandaBharath, K., & Jesuraja, K. (2020). SARS-CoV-2 pandemic lockdown: Effects on air quality in the industrialized Gujarat state of India. Science of The Total Environment, 737, 140391. https://doi.org/10.1016/j.scitotenv.2020.140391. (PMID: 10.1016/j.scitotenv.2020.140391)
Shmool, J. L., Michanowicz, D. R., Cambal, L., Tunno, B., Howell, J., Gillooly, S., Roper, C., Tripathy, S., Chubb, L. G., Eisl, H. M., Gorczynski, J. E., Holguin, F. E., Shields, K. N., & Clougherty, J. E. (2014). Saturation sampling for spatial variation in multiple air pollutants across an inversion-prone metropolitan area of complex terrain. Environmental Health, 13, 28. https://doi.org/10.1186/1476-069X-13-28. (PMID: 10.1186/1476-069X-13-28)
Singh, V., Singh, S., Biswal, A., Kesarkar, A. P., Mor, S., & Ravindra, K. (2020). Diurnal and temporal changes in air pollution during COVID-19 strict lockdown over different regions of India. Environmental Pollution, 266, 115368. https://doi.org/10.1016/j.envpol.2020.115368. (PMID: 10.1016/j.envpol.2020.115368)
Tobías, A., Carnerero, C., Reche, C., Massagué, J., Via, M., Minguillón, M. C., Alastuey, A., & Querol, X. (2020). Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Science of The Total Environment, 726, 138540. https://doi.org/10.1016/j.scitotenv.2020.138540. (PMID: 10.1016/j.scitotenv.2020.138540)
Venter, Z. S., Aunan, K., Chowdhury, S., & Lelieveld, J. (2020). COVID-19 lockdowns cause global air pollution declines. Proceedings of the National Academy of Sciences of the United States of America, 117, 18984–18990. https://doi.org/10.1073/pnas.2006853117. (PMID: 10.1073/pnas.2006853117)
Weathington, B. L., Cunningham, C. J. L., & Pittenger, D. J. (2012). Understanding business research, 1st ed. Wiley. https://doi.org/10.1002/9781118342978.
WHO, (2022). Ambient air pollution [WWW Document]. URL https://www.who.int/teams/environment-climate-change-and-health/air-quality-and-health/ambient-air-pollution#:~:text=Ambient%20air%20pollution%20accounts%20for,quality%20levels%20exceed%20WHO%20limits . (accessed 4.15.22).
Wu, J. T., Leung, K., & Leung, G. M. (2020). Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. The Lancet, 395, 689–697. https://doi.org/10.1016/S0140-6736(20)30260-9. (PMID: 10.1016/S0140-6736(20)30260-9)
Yoo, J.-M., Lee, Y.-R., Kim, D., Jeong, M.-J., Stockwell, W. R., Kundu, P. K., Oh, S.-M., Shin, D.-B., & Lee, S.-J. (2014). New indices for wet scavenging of air pollutants (O3, CO, NO2, SO2, and PM10) by summertime rain. Atmospheric Environment, 82, 226–237. https://doi.org/10.1016/j.atmosenv.2013.10.022. (PMID: 10.1016/j.atmosenv.2013.10.022)
Zhang, J., Wei, Y., & Fang, Z. (2019). Ozone pollution: A major health hazard worldwide. Frontiers in Immunology, 10, 2518. https://doi.org/10.3389/fimmu.2019.02518. (PMID: 10.3389/fimmu.2019.02518)
معلومات مُعتمدة: IGBP-ATCTM Indian Space Research Organisation (ISRO); IGBP-ATCTM Indian Space Research Organisation (ISRO); DST/INSPIRE/04/2017/001185 Deaprtment of Science and Technology (DST)
فهرسة مساهمة: Keywords: AIRS; CO; COVID-19 lockdown; NO2; O3; OMI; Satellite measurements
المشرفين على المادة: 0 (Air Pollutants)
S7G510RUBH (Nitrogen Dioxide)
66H7ZZK23N (Ozone)
0 (Environmental Pollutants)
0 (Particulate Matter)
تواريخ الأحداث: Date Created: 20230516 Date Completed: 20230518 Latest Revision: 20230617
رمز التحديث: 20230620
مُعرف محوري في PubMed: PMC10185963
DOI: 10.1007/s10661-023-11318-2
PMID: 37191765
قاعدة البيانات: MEDLINE