دورية أكاديمية

Dietary Supplementation of Brevibacillus laterosporus S62-9 Improves Broiler Growth and Immunity by Regulating Cecal Microbiota and Metabolites.

التفاصيل البيبلوغرافية
العنوان: Dietary Supplementation of Brevibacillus laterosporus S62-9 Improves Broiler Growth and Immunity by Regulating Cecal Microbiota and Metabolites.
المؤلفون: Zhi T; School of Food and Health, Beijing Technology and Business University, Beijing, 100048, People's Republic of China., Ma A; School of Food and Health, Beijing Technology and Business University, Beijing, 100048, People's Republic of China., Liu X; School of Food and Health, Beijing Technology and Business University, Beijing, 100048, People's Republic of China., Chen Z; School of Food and Health, Beijing Technology and Business University, Beijing, 100048, People's Republic of China., Li S; School of Food and Health, Beijing Technology and Business University, Beijing, 100048, People's Republic of China., Jia Y; School of Food and Health, Beijing Technology and Business University, Beijing, 100048, People's Republic of China. jiayingmin@btbu.edu.cn.
المصدر: Probiotics and antimicrobial proteins [Probiotics Antimicrob Proteins] 2024 Jun; Vol. 16 (3), pp. 949-963. Date of Electronic Publication: 2023 May 22.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 101484100 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1867-1314 (Electronic) Linking ISSN: 18671306 NLM ISO Abbreviation: Probiotics Antimicrob Proteins Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY. : Springer
مواضيع طبية MeSH: Chickens*/growth & development , Chickens*/microbiology , Chickens*/immunology , Gastrointestinal Microbiome* , Cecum*/microbiology , Cecum*/metabolism , Brevibacillus* , Dietary Supplements*/analysis , Animal Feed*/analysis , Probiotics*/administration & dosage, Animals ; Bacteria/classification ; Bacteria/isolation & purification ; Bacteria/genetics ; Bacteria/metabolism
مستخلص: Brevibacillus laterosporus has been added as a direct-fed microbiota to chicken. Yet, few studies have reported the effects of B. laterosporus on broiler growth and gut microbiota. The aim of this study was to evaluate the effects of B. laterosporus S62-9 on growth performance, immunity, cecal microbiota, and metabolites in broilers. A total of 160 1-day-old broilers were randomly divided into S62-9 and control groups, with or without 10 6  CFU/g B. laterosporus S62-9 supplementation, respectively. During the 42 days feeding, body weight and feed intake were recorded weekly. Serum was collected for immunoglobulin determination, and cecal contents were taken for 16S rDNA analysis and metabolome at Day 42. Results indicated that the broilers in S62-9 group showed an increase in body weight of 7.2% and 5.19% improvement in feed conversion ratio compared to the control group. The B. laterosporus S62-9 supplementation promoted the maturation of immune organs and increased the concentration of serum immunoglobulins. Furthermore, the α-diversity of cecal microbiota was improved in the S62-9 group. B. laterosporus S62-9 supplementation increased the relative abundance of beneficial bacteria including Akkermansia, Bifidobacterium, and Lactobacillus, while decreased the relative abundance of pathogens including Klebsiella and Pseudomonas. Untargeted metabolomics revealed that 53 differential metabolites between the two groups. The differential metabolites were enriched in 4 amino acid metabolic pathways, including arginine biosynthesis and glutathione metabolism. In summary, B. laterosporus S62-9 supplementation could improve the growth performance and immunity through the regulation of gut microbiota and metabolome in broilers.
(© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Tian M, He X, Feng Y, Wang W, Chen H, Gong M, Liu D, Clarke JL, van Eerde A (2021) Pollution by antibiotics and antimicrobial resistance in livestock and poultry manure in China, and countermeasures. Antibiotics-Basel 10(5).  https://doi.org/10.3390/antibiotics10050539.
Neveling DP, Dicks LMT (2021) Probiotics: an antibiotic replacement strategy for healthy broilers and productive rearing. Probiotics Antimicro 13(1):1–11. https://doi.org/10.1007/s12602-020-09640-z. (PMID: 10.1007/s12602-020-09640-z)
Jha R, Das R, Oak S, Mishra P (2020) Probiotics (direct-fed microbials) in poultry nutrition and their effects on nutrient utilization, growth and laying performance, and gut health: a systematic review. Animals-basel 10(10).  https://doi.org/10.3390/ani10101863.
Diaz Carrasco JM, Casanova NA, Fernandez Miyakawa ME (2019) Microbiota, gut health and chicken productivity: what is the connection?. Microorganisms 7(10).  https://doi.org/10.3390/microorganisms7100374.
Ogbuewu IP, Mabelebele M, Sebola NA, Mbajiorgu C (2022) Bacillus probiotics as alternatives to in-feed antibiotics and its influence on growth, serum chemistry, antioxidant status, intestinal histomorphology, and lesion scores in disease-challenged broiler chickens. Front Vet Sci 9:876725. https://doi.org/10.3389/fvets.2022.876725.
de Souza OF, Vecchi B, Gumina E, Matte F, Gazoni FL, Hernandez-Velasco X, Hall JW, Stefanello C, Layton S (2022) Development and evaluation of a commercial direct-fed microbial (zymospore((R))) on the fecal microbiome and growth performance of broiler chickens under experimental challenge conditions. Animals-Basel 12(11).  https://doi.org/10.3390/ani12111436.
Hadieva G, Lutfullin M, Pudova D, Akosah Y, Shagimardanova E, Gogoleva N, Sharipova M, Mardanova A (2021) Supplementation of Bacillus subtilis GM5 enhances broiler body weight gain and modulates cecal microbiota. 3 Biotech 11(3):126.  https://doi.org/10.1007/s13205-020-02634-2.
Jacquier V, Nelson A, Jlali M, Rhayat L, Brinch KS, Devillard E (2019) Bacillus subtilis 29784 induces a shift in broiler gut microbiome toward butyrate-producing bacteria and improves intestinal histomorphology and animal performance. Poult Sci 98(6):2548–2554. https://doi.org/10.3382/ps/pey602. (PMID: 10.3382/ps/pey60230668816)
Ruiu L (2013) Brevibacillus laterosporus, a pathogen of invertebrates and a broad-spectrum antimicrobial species. Insects 4(3):476–492. https://doi.org/10.3390/insects4030476. (PMID: 10.3390/insects4030476264624314553477)
Ministry of Agriculture and Rural Affairs of the People’s Republic of China (2017) Announcement, No. 2045. Available at: http://www.moa.gov.cn/nybgb/2014/dyq/201712/t20171219_6104350.htm . Accessed 7 March 2023.
Ning Y, Han P, Ma J, Liu Y, Fu Y, Wang Z, Jia Y (2021) Characterization of brevilaterins, multiple antimicrobial peptides simultaneously produced by Brevibacillus laterosporus S62–9, and their application in real food system. Food Biosci 42:101091.  https://doi.org/10.1016/j.fbio.2021.101091.
Han P, Chen Z, Liu Y, Ma A, Li S, Jia Y (2022) Structural organization of brevilaterin biosynthesis in Brevibacillus laterosporus S62–9: a novel MbtH-independent cationic antimicrobial peptide synthetase system. J Agric Food Chem 70(24):7471–7478. https://doi.org/10.1021/acs.jafc.2c01143. (PMID: 10.1021/acs.jafc.2c0114335675382)
Zhi T, Hong D, Zhang Z, Li S, Xia J, Wang C, Wu Y, Jia Y, Ma A (2022) Anti-inflammatory and gut microbiota regulatory effects of walnut protein derived peptide LPF in vivo. Food Res Int 152:110875. https://doi.org/10.1016/j.foodres.2021.110875.
Liu WC, Pan ZY, Zhao Y, Guo Y, Qiu SJ, Balasubramanian B, Jha R (2022) Effects of heat stress on production performance, redox status, intestinal morphology and barrier-related gene expression, cecal microbiome, and metabolome in indigenous broiler chickens. Front Physiol 13:890520. https://doi.org/10.3389/fphys.2022.890520.
Bai K, Huang Q, Zhang J, He J, Zhang L, Wang T (2017) Supplemental effects of probiotic Bacillus subtilis fmbJ on growth performance, antioxidant capacity, and meat quality of broiler chickens. Poult Sci 96(1):74–82. https://doi.org/10.3382/ps/pew246. (PMID: 10.3382/ps/pew24627486257)
Zhang B, Zhang H, Yu Y, Zhang R, Wu Y, Yue M, Yang C (2021) Effects of Bacillus coagulans on growth performance, antioxidant capacity, immunity function, and gut health in broilers. Poult Sci 100(6):101168. https://doi.org/10.1016/j.psj.2021.101168.
Khalid AH, Ullah KS, Naveed S, Latif F, Pasha TN, Hussain I, Qaisrani SN (2021) Effects of spray dried yeast (Saccharomyces cerevisiae) on growth performance and carcass characteristics, gut health, cecal microbiota profile and apparent ileal digestibility of protein, amino acids and energy in broilers. Trop Anim Health Prod 53(2):252. https://doi.org/10.1007/s11250-021-02684-5. (PMID: 10.1007/s11250-021-02684-533829333)
Yang JX, Maria TC, Zhou B, Xiao FL, Wang M, Mao YJ, Li Y (2020) Quercetin improves immune function in Arbor Acre broilers through activation of NF-κB signaling pathway. Poultry Sci 99(2):906–913. https://doi.org/10.1016/j.psj.2019.12.021. (PMID: 10.1016/j.psj.2019.12.021)
Dong Y, Li R, Liu Y, Ma L, Zha J, Qiao X, Chai T, Wu B (2020) Benefit of dietary supplementation with Bacillus subtilis BYS2 on growth performance, immune response, and disease resistance of broilers. Probiotics Antimicro 12(4):1385–1397. https://doi.org/10.1007/s12602-020-09643-w. (PMID: 10.1007/s12602-020-09643-w)
Siddiqui SH, Khan M, Kang D, Choi HW, Shim K (2022) Meta-analysis and systematic review of the thermal stress response: Gallus gallus domesticus show low immune responses during heat stress. Front Physiol 13:809648.  https://doi.org/10.3389/fphys.2022.809648.
Michaudel C, Sokol H (2020) The gut microbiota at the service of immunometabolism. Cell Metab 32(4):514–523. https://doi.org/10.1016/j.cmet.2020.09.004. (PMID: 10.1016/j.cmet.2020.09.00432946809)
Yadav S, Jha R (2019) Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. J Animal Sci Biotechnol 10.  https://doi.org/10.1186/s40104-018-0310-9.
Cao GT, Zhan XA, Zhang LL, Zeng XF, Chen AG, Yang CM (2018) Modulation of broilers’ caecal microflora and metabolites in response to a potential probiotic Bacillus amyloliquefaciens. J Anim Physiol Anim Nutr (Berl) 102(2):e909–e917. https://doi.org/10.1111/jpn.12856. (PMID: 10.1111/jpn.1285629314285)
Hu L, Geng S, Li Y, Cheng S, Fu X, Yue X, Han X (2017) Exogenous fecal microbiota transplantation from local adult pigs to crossbred newborn piglets. Front Microbiol 8:2663. https://doi.org/10.3389/fmicb.2017.02663. (PMID: 10.3389/fmicb.2017.0266329375527)
Tabashsum Z, Peng M, Alvarado-Martinez Z, Aditya A, Bhatti J, Romo PB, Young A, Biswas D (2020) Competitive reduction of poultry-borne enteric bacterial pathogens in chicken gut with bioactive Lactobacillus casei. Sci Rep 10(1):16259. https://doi.org/10.1038/s41598-020-73316-5. (PMID: 10.1038/s41598-020-73316-5330049227530658)
Whelan RA, Doranalli K, Rinttila T, Vienola K, Jurgens G, Apajalahti J (2019) The impact of Bacillus subtilis DSM 32315 on the pathology, performance, and intestinal microbiome of broiler chickens in a necrotic enteritis challenge. Poult Sci 98(9):3450–3463. https://doi.org/10.3382/ps/pey500. (PMID: 10.3382/ps/pey50030452717)
Sun XX, Chen DD, Deng SQ, Zhang GM, Peng X, Sa RN (2022) Using combined Lactobacillus and quorum quenching enzyme supplementation as an antibiotic alternative to improve broiler growth performance, anti-oxidative status, immune response, and gut microbiota. Poultry Sci 101997. https://doi.org/10.1016/j.psj.2022.101997.
Liu Y, Ma A, Han P, Chen Z, Jia Y (2020) Antibacterial mechanism of brevilaterin B: an amphiphilic lipopeptide targeting the membrane of Listeria monocytogenes. Appl Microbiol Biotechnol 104(24):10531–10539. https://doi.org/10.1007/s00253-020-10993-2. (PMID: 10.1007/s00253-020-10993-233170327)
Bilal M, Achard C, Barbe F, Chevaux E, Ronholm J, Zhao X (2021) Bacillus pumilus and Bacillus subtilis promote early maturation of cecal microbiota in broiler chickens. Microorganisms 9(9). https://doi.org/10.3390/microorganisms9091899.
Brownlie EJE, Chaharlangi D, Wong EO, Kim D, Navarre WW (2022) Acids produced by lactobacilli inhibit the growth of commensal Lachnospiraceae and S24–7 bacteria. Gut Microbes 14(1):2046452. https://doi.org/10.1080/19490976.2022.2046452. (PMID: 10.1080/19490976.2022.2046452352668478920129)
Yang WY, Chou CH, Wang C (2022) The effects of feed supplementing Akkermansia muciniphila on incidence, severity, and gut microbiota of necrotic enteritis in chickens. Poult Sci 101(4):101751. https://doi.org/10.1016/j.psj.2022.101751.
Chen J, Chia N, Kalari KR, Yao JZ, Novotna M, Paz Soldan MM, Luckey DH, Marietta EV, Jeraldo PR, Chen X, Weinshenker BG, Rodriguez M, Kantarci OH, Nelson H, Murray JA, Mangalam AK (2016) Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci Rep 6:28484. https://doi.org/10.1038/srep28484. (PMID: 10.1038/srep28484273463724921909)
Gong L, Xiao G, Zheng L, Yan X, Qi Q, Zhu C, Feng X, Huang W, Zhang H (2021) Effects of dietary tributyrin on growth performance, biochemical indices, and intestinal microbiota of yellow-feathered broilers. Animals-basel 11(12).  https://doi.org/10.3390/ani11123425.
Yang L, Chen L, Zheng K, Ma YJ, He RX, Arowolo MA, Zhou YJ, Xiao DF, He JH (2022) Effects of fenugreek seed extracts on growth performance and intestinal health of broilers. Poult Sci 101(7):101939. https://doi.org/10.1016/j.psj.2022.101939.
Authority EFS (2004) Opinion of the scientific panel on biological hazards (BIOHAZ) related to the use of vaccines for the control of Salmonella in poultry. EFSA J 2(12):114.  https://doi.org/10.2903/j.efsa.2004.114.
Iacob S, Iacob DG (2019) Infectious threats, the intestinal barrier, and its Trojan horse: dysbiosis. Front Microbiol 10:1676. https://doi.org/10.3389/fmicb.2019.01676. (PMID: 10.3389/fmicb.2019.01676314477936692454)
Dong N, Yang X, Chan EW, Zhang R, Chen S (2022) Klebsiella species: taxonomy, hypervirulence and multidrug resistance. EBioMedicine 79:103998.  https://doi.org/10.1016/j.ebiom.2022.103998.
Abd El-Ghany WA (2021) Pseudomonas aeruginosa infection of avian origin: zoonosis and one health implications. Vet World 14(8):2155–2159. https://doi.org/10.14202/vetworld.2021.2155-2159. (PMID: 10.14202/vetworld.2021.2155-2159345663348448624)
Sun Z, Zhen Y, Li T, Aschalew ND, Wang T, Chen X, Zhao W, Zhang X, Qin G (2022) Yeast culture (Saccharomyces cerevisiae) and its active metabolites affect the cecal microbiome of broilers. South African J Animal Sci 51(6):678–688. https://doi.org/10.4314/sajas.v51i6.1. (PMID: 10.4314/sajas.v51i6.1)
Cao G, Zeng X, Liu J, Yan F, Xiang Z, Wang Y, Tao F, Yang C (2020) Change of serum metabolome and cecal microflora in broiler chickens supplemented with grape seed extracts. Front Immunol 11:610934. https://doi.org/10.3389/fimmu.2020.610934.
Turroni S, Brigidi P, Cavalli A, Candela M (2018) Microbiota-host transgenomic metabolism, bioactive molecules from the inside. J Med Chem 61(1):47–61. https://doi.org/10.1021/acs.jmedchem.7b00244. (PMID: 10.1021/acs.jmedchem.7b0024428745893)
Tang XL, Wang WJ, Hong GC, Duan CH, Zhu SR, Tian YE, Han CQ, Qian W, Lin R, Hou XH (2021) Gut microbiota-mediated lysophosphatidylcholine generation promotes colitis in intestinal epithelium-specific Fut2 deficiency. J Biomed Sci 28(1).  https://doi.org/10.1186/s12929-021-00711-z.
Lee H-J, Ko H-J, Song D-K, Jung Y-J (2018) Lysophosphatidylcholine promotes phagosome maturation and regulates inflammatory mediator production through the protein kinase a-phosphatidylinositol 3 kinase-p38 mitogen-activated protein kinase signaling pathway during mycobacterium tuberculosis infection in mouse macrophages. Front Immunol 9.  https://doi.org/10.3389/fimmu.2018.00920.
Tu MY, Han KY, Chang GR, Lai GD, Chang KY, Chen CF, Lai JC, Lai CY, Chen HL, Chen CM (2020) Kefir peptides prevent estrogen deficiency-induced bone loss and modulate the structure of the gut microbiota in ovariectomized mice. Nutrients 12(11).  https://doi.org/10.3390/nu12113432.
Fei Y, Wang Y, Pang Y, Wang W, Zhu D, Xie M, Lan S, Wang Z (2019) Xylooligosaccharide modulates gut microbiota and alleviates colonic inflammation caused by high fat diet induced obesity. Front Physiol 10:1601. https://doi.org/10.3389/fphys.2019.01601. (PMID: 10.3389/fphys.2019.0160132038285)
Hassan F, Arshad MA, Hassan S, Bilal RM, Saeed M, Rehman MS (2021) Physiological role of arginine in growth performance, gut health and immune response in broilers: a review. Worlds Poult Sci J 77(3):517–537. https://doi.org/10.1080/00439339.2021.1925198. (PMID: 10.1080/00439339.2021.1925198)
Metzler-Zebeli BU, Siegerstetter SC, Magowan E, Lawlor PG, O'Connell NE, Zebeli Q (2019) Feed restriction reveals distinct serum metabolome profiles in chickens divergent in feed efficiency traits. Metabolites 9(2). https://doi.org/10.3390/metabo9020038.
Hiep Thi D, Sharma NK, Barekatain R, Kheravii SK, Bradbury EJ, Wu S-B, Swick RA (2022) Supplementation of reduced protein diets with L-arginine and L-citrulline for broilers challenged with subclinical necrotic enteritis. 2. Intestinal permeability, microbiota, and short-chain fatty acid production. Animal Prod Sci 62(13):1250–1265.  https://doi.org/10.1071/an21394.
Uyanga VA, Zhao J, Wang X, Jiao H, Onagbesan OM, Lin H (2022) Effects of dietary L-citrulline supplementation on nitric oxide synthesis, immune responses and mitochondrial energetics of broilers during heat stress. J Therm Biol 105:103227.  https://doi.org/10.1016/j.jtherbio.2022.103227.
Burgalossi A, Herfst L, von Heimendahl M, Forste H, Haskic K, Schmidt M, Brecht M (2011) Microcircuits of functionally identified neurons in the rat medial entorhinal cortex. Neuron 70(4):773–786. https://doi.org/10.1016/j.neuron.2011.04.003. (PMID: 10.1016/j.neuron.2011.04.00321609831)
معلومات مُعتمدة: 32072199 National Natural Science Foundation of China
فهرسة مساهمة: Keywords: Brevibacillus laterosporus S62-9; Growth performance; Immune response; Intestinal microbiota; Metabolomics
تواريخ الأحداث: Date Created: 20230521 Date Completed: 20240525 Latest Revision: 20240525
رمز التحديث: 20240525
DOI: 10.1007/s12602-023-10088-0
PMID: 37211578
قاعدة البيانات: MEDLINE
الوصف
تدمد:1867-1314
DOI:10.1007/s12602-023-10088-0