دورية أكاديمية

Influence of seasonal variation to the population growth and ecophysiology of Typha domingensis (Typhaceae).

التفاصيل البيبلوغرافية
العنوان: Influence of seasonal variation to the population growth and ecophysiology of Typha domingensis (Typhaceae).
المؤلفون: da Cunha Cruz Y; Universidade Federal de Lavras, Lavras, MG, CEP: 37200-000, Brasil., Scarpa ALM; Universidade Federal de Lavras, Lavras, MG, CEP: 37200-000, Brasil., Díaz AS; Universidade Federal de Lavras, Lavras, MG, CEP: 37200-000, Brasil., Pereira MP; Universidade Federal de Lavras, Lavras, MG, CEP: 37200-000, Brasil., de Castro EM; Universidade Federal de Lavras, Lavras, MG, CEP: 37200-000, Brasil., Pereira FJ; Instituto de Ciências da Natureza, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, nº700, Centro, Alfenas, MG, CEP: 37130-001, Brasil. fabricio.pereira@unifal-mg.edu.br.
المصدر: Journal of plant research [J Plant Res] 2023 Sep; Vol. 136 (5), pp. 665-678. Date of Electronic Publication: 2023 May 23.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Tokyo Country of Publication: Japan NLM ID: 9887853 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1618-0860 (Electronic) Linking ISSN: 09189440 NLM ISO Abbreviation: J Plant Res Subsets: MEDLINE
أسماء مطبوعة: Publication: 2002- : Tokyo ; New York : Springer-Verlag Tokyo
Original Publication: Tokyo : Botanical Society of Japan, c1993-
مواضيع طبية MeSH: Typhaceae*, Seasons ; Population Growth ; Wetlands ; Photosynthesis
مستخلص: Precipitation is an important climatic element that defines the hydrological regime, and its seasonal variation produces annual dry and wet periods in some areas. This seasonality changes wetland environments and leverages the growth dynamics of macrophytes present, including Typha domingensis Pers. This study aimed to evaluate the influence of seasonal variation on the growth, anatomy and ecophysiology of T. domingensis in a natural wetland. Biometric, anatomical and ecophysiological traits of T. domingensis were evaluated over one year at four-month intervals. Reductions in photosynthesis were evidenced at the end of the wet periods and during the dry periods, and these reductions were associated with thinner palisade parenchymas. Increased stomatal indexes and densities as well as thinner epidermis observed at the beginning dry periods can be associated with higher transpiration rates during this period. The plants maintained their water contents during the dry periods, which may be related to the storage of water in leaf trabecular parenchyma, as this is the first time that results indicate the function of this tissue as a seasonal aquiferous parenchyma. In addition, increasing proportions of aerenchymas were evident during the wet periods, which may be related to a compensation mechanism for soil waterlogging. Therefore, the growth, anatomy and ecophysiology of T. domingensis plants change throughout the year to adjust to both the dry and wet periods, providing conditions for the survival of the plants and modulating population growth.
(© 2023. The Author(s) under exclusive licence to The Botanical Society of Japan.)
References: Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728. https://doi.org/10.1127/0941-2948/2013/0507. (PMID: 10.1127/0941-2948/2013/0507)
Anupama A, Bhugra S, Lall B, Chaudhury S, Chugh A (2019) Morphological, transcriptomic and proteomic responses of contrasting rice genotypes towards drought stress. Environ Exp Bot 166:103795. https://doi.org/10.1016/j.envexpbot.2019.06.008. (PMID: 10.1016/j.envexpbot.2019.06.008)
Barcikowski W, Nobel PS (1984) Water relations of cacti during desiccation: distribution of water in tissues. Bot Gaz 145:110–115. https://doi.org/10.1086/337433. (PMID: 10.1086/337433)
Barros DF, Albernaz ALM (2014) Possible impacts of climate change on wetlands and its biota in the Brazilian Amazon. Braz J Biol 74:810–820. https://doi.org/10.1590/1519-6984.04013. (PMID: 10.1590/1519-6984.0401325627590)
Boeger MRT, de Oliveira Pil MVW, BelémFilho N (2007) Comparative leaf architecture of Hedychium coronarium J. Koenig (Zingiberaceae) and Typha domingensis Pers (Typhaceae). Iheringia Série Botânica 62:113–120.
Canalli YM, Bove CP (2017) Flora do Rio de Janeiro: Typhaceae. Rodriguésia 68:111–113. https://doi.org/10.1590/2175-7860201768120. (PMID: 10.1590/2175-7860201768120)
Chen H, Zamorano MF, Ivanoff D (2013) Effects of deep flooding on nutrients and non-structural carbohydrates of mature Typha domingensis and its post-flooding recovery. Ecol Eng 53:267–274. https://doi.org/10.1016/j.ecoleng.2012.12.056. (PMID: 10.1016/j.ecoleng.2012.12.056)
Clauw PF, Coppens BK, Dhondt S, Daele TV, Maleux K, Storme V, Clement G, Gonzalez N, Inzé D (2015) Leaf responses to mild drought stress in natural variants of Arabidopsis. Plant Physiol 167:800–816. https://doi.org/10.1104/pp.114.254284. (PMID: 10.1104/pp.114.254284256045324348775)
Corrêa FF, Pereira MP, Kloss RB, de Castro EM, Pereira FJ (2017) Leaf ontogeny and meristem activity of Typha domingensis Pers. (Typhaceae) under different phosphate concentrations. Aquat Bot 136:43–51. https://doi.org/10.1016/j.aquabot.2016.09.007. (PMID: 10.1016/j.aquabot.2016.09.007)
Cruz YC, Scarpa ALM, Pereira MP, de Castro EM, Pereira FJ (2019) Growth of Typha domingensis as related to leaf physiological and anatomical modifications under drought conditions. Acta Physiol Plant 41:64. https://doi.org/10.1007/s11738-019-2858-1. (PMID: 10.1007/s11738-019-2858-1)
Cruz YC, Scarpa ALM, Pereira MP, de Castro EM, Pereira FJ (2020) Root anatomy and nutrient uptake of the cattail Typha domingensis Pers. (Typhaceae) grown under drought condition. Rhizosphere 16:100253. https://doi.org/10.1016/j.rhisph.2020.100253. (PMID: 10.1016/j.rhisph.2020.100253)
Drake BG, Raschke K, Salisbury FB (1970) Temperatures and transpiration resistances of Xanthium leaves as affected by air temperature, humidity, and wind speed. Plant Physiol 46:324–330. https://doi.org/10.1104/pp.46.2.324. (PMID: 10.1104/pp.46.2.32416657458396587)
Duarte VP, Pereira MP, Corrêa FF, Castro EM, Pereira FJ (2021) Aerenchyma, gas diffusion, and catalase activity in Typha domingensis: a complementary model for radial oxygen loss. Protoplasma 258:765–777. https://doi.org/10.1007/s00709-020-01597-8. (PMID: 10.1007/s00709-020-01597-833404920)
Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Ciências Da Vida Cel Mol 72:673–689. https://doi.org/10.1007/s00018-014-1767-0. (PMID: 10.1007/s00018-014-1767-0)
Feder N, O’brien TP (1968) Plant microtechnique: some principles and new methods. Am J Bot 55:123–142. https://doi.org/10.1002/j.1537-2197.1968.tb06952.x. (PMID: 10.1002/j.1537-2197.1968.tb06952.x)
Ferreira DF (2011) Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia 35:1039–1042. https://doi.org/10.1590/S1413-70542011000600001. (PMID: 10.1590/S1413-70542011000600001)
Hammer Ø, Harper DA, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9.
Hegazy AK, Abdel-Ghani NT, El-Chaghaby GA (2011) Phytoremediation of industrial wastewater potentiality by Typha domingensis. Jornal Internacional De Ciência e Tecnologia Ambiental 8:639–648. https://doi.org/10.1007/BF03326249. (PMID: 10.1007/BF03326249)
Johansen DA (1940) Plant microtechnique. Mc-Graw-Hill, New York.
Kissmann KG, Groth D (2000) Plantas Infestantes e Nocivas. 2ªed. In: TOMO III, p 726.
Kleyer M, Dray S, de Bello F, Lepš J, Pakeman RJ, Strauss B, Thuiller W, Lavorel S (2012) Assessing species and community functional responses to environmental gradients: which multivariate methods? J Veg Sci 23:805–821. https://doi.org/10.1111/j.1654-1103.2012.01402.x. (PMID: 10.1111/j.1654-1103.2012.01402.x)
Köppen W (1928) Köppen-Geiger map of world climates.
Kraus JE, Arduin M (1997) Basic manual in methods in plant morphology. EDUR, Seropédica.
Lishawa SC, Albert DA, Tuchman NC (2010) Water level decline promotes Typha X Glauca establishment and vegetation change in Great Lakes coastal wetlands. Wetlands 30:1085–1096. https://doi.org/10.1007/s13157-010-0113-z. (PMID: 10.1007/s13157-010-0113-z)
Marengo JA, Nobre CA, Seluchi ME, Cuartas A, Alves LM, Mendiondo EM, Obregón G, Sampaio G (2015) A seca e a crise hídrica de 2014–2015 em São Paulo. Revista USP 106: 31–44. Doi: https://doi.org/10.11606/issn.2179-0892.geousp.2015.100879.
Melo HCD, Castro EMD, Soares AM, Melo LAD, Alves JD (2007) Alterações anatômicas e fisiológicas em Setaria anceps Stapf ex Massey e Paspalum paniculatum L. sob condições de déficit hídrico. Hoehnea 34:145–153. https://doi.org/10.1590/S2236-89062007000200003. (PMID: 10.1590/S2236-89062007000200003)
Mendes Júnior H, Tavares AS, dos Santos R, Júnior W, Silva MLN, Santos BR, Mincato RL (2018) Water erosion in Oxisols under coffee cultivation. Rev Bras Ciênc Solo. https://doi.org/10.1590/18069657rbcs20170093. (PMID: 10.1590/18069657rbcs20170093)
Miao SL, Zou CB (2012) Effects of inundation on growth and nutrient allocation of six major macrophytes in the Florida Everglades. Ecol Eng 42:10–18. https://doi.org/10.1016/j.ecoleng.2012.01.009. (PMID: 10.1016/j.ecoleng.2012.01.009)
Moroke TS, Schwartz RC, Brown KW, Juo ASR (2011) Water use efficiency of dryland cowpea, sorghum and sunflower under reduced tillage. Soil Tillage Res 112:76–84. https://doi.org/10.1016/j.still.2010.11.008. (PMID: 10.1016/j.still.2010.11.008)
Oliveira JPV, Pereira MP, Duarte VP, Corrêa FF, Castro EM, Pereira FJ (2018) Cadmium tolerance of Typha domingensis Pers. (Typhaceae) as related to growth and leaf morphophysiology. Braz J Biol 78:509–516. https://doi.org/10.1590/1519-6984.171961. (PMID: 10.1590/1519-6984.17196129995113)
Oliveira JPV, Duarte VP, Castro EM, Magalhães PC, Pereira FJ (2021) Stomatal cavity modulates the gas exchange of Sorghum bicolor (L.) Moench. grown under different water levels. Protoplasma 15:10. https://doi.org/10.1007/s00709-021-01722-1. (PMID: 10.1007/s00709-021-01722-1)
Olson ME, Soriano D, Rosell JA, Anfodillo T, Donoghue MJ, Edwards EJ, Echeverría A (2018) Plant height and hydraulic vulnerability to drought and cold. Proceed Natl Acad Sci 115:7551–7556. https://doi.org/10.1073/pnas.1721728115. (PMID: 10.1073/pnas.1721728115)
Pandey R, Jose S, Sinha MK (2020) Fiber Extraction and Characterization from Typha domingensis. J Nat Fibers. https://doi.org/10.1080/15440478.2020.1821285. (PMID: 10.1080/15440478.2020.1821285)
Pompêo M (2017) Monitoramento e manejo de macrófitas aquáticas em reservatórios tropicais brasileiros. São Paulo: Instituto de Biociências da USP 138.
Ramos RA, Ribeiro RV, Machado EC, Machado RS (2010) Variação sazonal do crescimento vegetativo de laranjeiras Hamlin enxertadas em citrumeleiro Swingle no município de Limeira, Estado de São Paulo. Acta Sci Agron 32:539–545. https://doi.org/10.4025/actasciagron.v32i3.3944. (PMID: 10.4025/actasciagron.v32i3.3944)
Santos KR, Pereira MP, Ferreira ACG, Rodrigues LCA, Castro EM, Corrêa FF, Pereira FJ (2015) Typha domingensis Pers. responses to leaf anatomy and photosynthesis as infuenced by phosphorus. Aquat Bot 122:47–53. https://doi.org/10.1016/j.aquabot.2015.01.007. (PMID: 10.1016/j.aquabot.2015.01.007)
Santos-Silva F, Saraiva DP, Monteiro RF, Pita P, Mantovani A, Forzza RC (2013) Invasion of the South American dry diagonal: What can the leaf anatomy of Pitcairnioideae (Bromeliaceae) tell us about it? Flora-Morphol Distrib Funct Ecol Plants 208:508–521. https://doi.org/10.1016/j.flora.2013.08.003. (PMID: 10.1016/j.flora.2013.08.003)
Scarpa ALM, da Cunha CY, Pereira MP, de Castro EM, Polo M, Duarte VP, Pereira FJ (2021) Self-shading effect in the growth, photosynthesis and anatomy of Typha domingensis Pers. Braz J Bot 44:977–987. https://doi.org/10.1007/s40415-021-00756-2. (PMID: 10.1007/s40415-021-00756-2)
Shipley B, Vile D, Garnier E, Wright IJ, Poorter H (2005) Functional linkages between leaf traits and net photosynthetic rate: reconciling empirical and mechanistic models. Funct Ecol 19:602–615. https://doi.org/10.1111/j.1365-2435.2005.01008.x. (PMID: 10.1111/j.1365-2435.2005.01008.x)
Silva ARA, Bezerra FM, de Lacerda CF, Valdenor Pereira Filho J, de Freitas CA (2013) Gas exchange in sunflower plants subjected to water deficit at different stages of growth. Revista Ciência Agronomica 44:86. https://doi.org/10.1590/S1806-66902013000100011. (PMID: 10.1590/S1806-66902013000100011)
Sismet. Sistema de monitoramento meteorológico Cooxupé. http://sismet.cooxupe.com.br:9000/dados/estacao/ . Accessed 21 Jun 2020.
Stenzel NMC, Neves CSVJ, Marur CJ, Gomes JC (2005) Crescimento vegetativo de plantas cítricas no norte e noroeste do Paraná. Rev Bras Frutic 27:412–417. https://doi.org/10.1590/S0100-29452005000300018. (PMID: 10.1590/S0100-29452005000300018)
Vivian LM, Godfree RC, Colloff RC, Mayence CE, Marshall DJ (2014) Wetland plant growth under contrasting water regimes associated with river regulation and drought: implications for environmental water management. Plant Ecol 215:997–1011. https://doi.org/10.1007/s11258-014-0357-4. (PMID: 10.1007/s11258-014-0357-4)
Weraduwage SM, Chen J, Anozie FC, Morales A, Weise SE, Sharkey TD (2015) The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana. Front Plant Sci 6:167. https://doi.org/10.3389/fpls.2015.00167. (PMID: 10.3389/fpls.2015.00167259146964391269)
فهرسة مساهمة: Keywords: Anatomy; Cattail; Macrophytes; Photosynthesis; Precipitation
تواريخ الأحداث: Date Created: 20230523 Date Completed: 20230814 Latest Revision: 20230814
رمز التحديث: 20231215
DOI: 10.1007/s10265-023-01468-2
PMID: 37219754
قاعدة البيانات: MEDLINE