دورية أكاديمية

Electronic Structure and Excited-State Dynamics of DNA-Templated Monomers and Aggregates of Asymmetric Polymethine Dyes.

التفاصيل البيبلوغرافية
العنوان: Electronic Structure and Excited-State Dynamics of DNA-Templated Monomers and Aggregates of Asymmetric Polymethine Dyes.
المؤلفون: Duncan KM, Byers HM, Houdek ME, Roy SK, Biaggne A, Barclay MS, Patten LK, Huff JS, Kellis DL, Wilson CK, Lee J, Davis PH; Center for Advanced Energy Studies, Idaho Falls, Idaho 83401, United States., Mass OA, Li L; Center for Advanced Energy Studies, Idaho Falls, Idaho 83401, United States., Turner DB, Hall JA, Knowlton WB, Yurke B, Pensack RD
المصدر: The journal of physical chemistry. A [J Phys Chem A] 2023 Jun 15; Vol. 127 (23), pp. 4901-4918. Date of Electronic Publication: 2023 Jun 01.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: American Chemical Society Country of Publication: United States NLM ID: 9890903 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1520-5215 (Electronic) Linking ISSN: 10895639 NLM ISO Abbreviation: J Phys Chem A Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: Washington, D.C. : American Chemical Society, c1997-
مستخلص: Aggregates of conjugated organic molecules (i.e., dyes) may exhibit relatively large one- and two-exciton interaction energies, which has motivated theoretical studies on their potential use in quantum information science (QIS). In practice, one way of realizing large one- and two-exciton interaction energies is by maximizing the transition dipole moment (μ) and difference static dipole moment (Δ d ) of the constituent dyes. In this work, we characterized the electronic structure and excited-state dynamics of monomers and aggregates of four asymmetric polymethine dyes templated via DNA. Using steady-state and time-resolved absorption and fluorescence spectroscopy along with quantum-chemical calculations, we found the asymmetric polymethine dye monomers exhibited a large μ, an appreciable Δ d , and a long excited-state lifetime (τ p ). We formed dimers of all four dyes and observed that one dye, Dy 754, displayed the strongest propensity for aggregation and exciton delocalization. Motivated by these results, we undertook a more comprehensive survey of Dy 754 dimer and tetramer aggregates using steady-state absorption and circular dichroism spectroscopy. Modeling these spectra revealed an appreciable excitonic hopping parameter ( J ). Lastly, we used femtosecond transient absorption spectroscopy to characterize τ p of the dimer and tetramer, which we observed to be exceedingly short. This work revealed that asymmetric polymethine dyes exhibited μ, Δ d , monomer τ p , and J values promising for QIS; however, further work is needed to overcome excited-state quenching and achieve long aggregate τ p .
References: RSC Adv. 2021 May 26;11(31):19029-19040. (PMID: 35478639)
Nano Lett. 2012 Apr 11;12(4):2117-22. (PMID: 22401838)
J Phys Chem B. 2007 Sep 20;111(37):11064-74. (PMID: 17718469)
J Am Chem Soc. 2022 Aug 31;144(34):15539-15548. (PMID: 35951363)
J Phys Chem A. 2023 Feb 9;127(5):1141-1157. (PMID: 36705555)
Nature. 2016 Sep 14;537(7620):320-7. (PMID: 27629638)
Nat Chem. 2011 Sep 23;3(10):763-74. (PMID: 21941248)
Chem Phys. 2008 Aug 22;357(1-3):79-84. (PMID: 20617102)
J Phys Chem A. 2014 Sep 18;118(37):8320-8. (PMID: 24814224)
Phys Chem Chem Phys. 2021 Jul 21;23(28):15196-15208. (PMID: 34231586)
J Phys Chem Lett. 2022 Mar 31;13(12):2782-2791. (PMID: 35319215)
J Phys Chem Lett. 2020 May 21;11(10):4163-4172. (PMID: 32391695)
ACS Nano. 2019 Mar 26;13(3):2986-2994. (PMID: 30758934)
Acc Chem Res. 2017 Feb 21;50(2):341-350. (PMID: 28145688)
J Phys Chem A. 2016 Dec 22;120(50):9941-9947. (PMID: 27934475)
Chemistry. 2022 Jan 27;28(6):e202103168. (PMID: 34727380)
Nat Nanotechnol. 2014 Dec;9(12):981-5. (PMID: 25305743)
Nature. 2017 Dec 6;552(7683):72-77. (PMID: 29219968)
ACS Sens. 2017 Aug 25;2(8):1205-1214. (PMID: 28787151)
J Phys Chem C Nanomater Interfaces. 2022 Oct 13;126(40):17164-17175. (PMID: 36268205)
J Chem Theory Comput. 2013 Jan 8;9(1):543-54. (PMID: 26589053)
J Phys Chem Lett. 2022 Nov 24;13(46):10688-10696. (PMID: 36355575)
RSC Adv. 2022 Oct 4;12(43):28063-28078. (PMID: 36320263)
J Phys Chem B. 2010 Jul 1;114(25):8327-34. (PMID: 20524652)
J Chem Phys. 2018 Feb 28;148(8):085101. (PMID: 29495791)
Annu Rev Biophys. 2017 May 22;46:23-42. (PMID: 28301774)
ACS Photonics. 2015 Mar 18;2(3):398-404. (PMID: 25839049)
Science. 2012 Nov 23;338(6110):1042-6. (PMID: 23180855)
J Org Chem. 2011 Oct 7;76(19):8015-21. (PMID: 21859088)
J Chem Phys. 2023 Jan 21;158(3):035101. (PMID: 36681650)
Nature. 2019 Oct;574(7779):505-510. (PMID: 31645734)
Chem Rev. 2010 Nov 10;110(11):6736-67. (PMID: 20063869)
Chemistry. 2019 Aug 27;25(48):11294-11301. (PMID: 31257652)
Molecules. 2022 Jun 22;27(13):. (PMID: 35807250)
Nature. 2002 Nov 7;420(6911):102-6. (PMID: 12422224)
Phys Chem Chem Phys. 2020 Sep 7;22(33):18340-18350. (PMID: 32785389)
Org Biomol Chem. 2012 Dec 7;10(45):8944-7. (PMID: 23076304)
J Phys Chem B. 2013 Dec 12;117(49):15519-26. (PMID: 23789842)
Chem Cent J. 2012 Jul 18;6(1):70. (PMID: 22809100)
J Fluoresc. 2009 May;19(3):443-8. (PMID: 18972191)
J Phys Chem B. 2016 Sep 1;120(34):8845-62. (PMID: 27490865)
Nano Lett. 2017 Mar 8;17(3):1719-1726. (PMID: 28165244)
J Am Chem Soc. 2021 Feb 10;143(5):2256-2263. (PMID: 33529009)
J Chem Phys. 2019 Sep 28;151(12):124503. (PMID: 31575193)
J Phys Chem C Nanomater Interfaces. 2022 Feb 24;126(7):3475-3488. (PMID: 35242270)
J Phys Chem B. 2020 Oct 29;124(43):9636-9647. (PMID: 33052691)
J Phys Chem B. 2021 Dec 23;125(50):13670-13684. (PMID: 34894675)
Science. 1997 May 23;276(5316):1233-6. (PMID: 9157876)
Commun Chem. 2021 Feb 18;4(1):19. (PMID: 36697509)
J Am Chem Soc. 2015 Jun 3;137(21):6790-803. (PMID: 25946670)
Acc Chem Res. 2014 Jun 17;47(6):1816-24. (PMID: 24849225)
Biophys J. 1983 Nov;44(2):201-9. (PMID: 6197102)
Methods Appl Fluoresc. 2016 Nov 11;4(4):045001. (PMID: 28192304)
J Phys Chem B. 2018 May 17;122(19):5020-5029. (PMID: 29698610)
Q Rev Biophys. 2011 Feb;44(1):123-51. (PMID: 21108866)
Nat Chem Biol. 2014 Jul;10(7):492-501. (PMID: 24937067)
Science. 2013 Mar 8;339(6124):1169-74. (PMID: 23471399)
Annu Rev Phys Chem. 1997;48:213-42. (PMID: 9348658)
Nature. 2006 Mar 16;440(7082):297-302. (PMID: 16541064)
Angew Chem Int Ed Engl. 2022 Nov 25;61(48):e202208647. (PMID: 36161448)
Nanoscale. 2020 Jun 11;12(22):11858-11862. (PMID: 32484195)
Science. 2013 Feb 15;339(6121):791-4. (PMID: 23413349)
J Am Chem Soc. 2021 Sep 29;143(38):15508-15529. (PMID: 34533930)
J Mol Graph Model. 2022 Jul;114:108209. (PMID: 35526295)
Phys Chem Chem Phys. 2020 Feb 7;22(5):3048-3057. (PMID: 31960856)
Acc Chem Res. 2010 Mar 16;43(3):429-39. (PMID: 20014774)
Nat Mater. 2006 Sep;5(9):683-96. (PMID: 16946728)
Nature. 2003 Jan 23;421(6921):427-31. (PMID: 12540916)
J Phys Chem A. 2021 Nov 11;125(44):9632-9644. (PMID: 34709821)
Science. 2001 Oct 5;294(5540):93-6. (PMID: 11588250)
Molecules. 2022 May 27;27(11):. (PMID: 35684394)
Opt Lett. 2022 Apr 15;47(8):1924-1927. (PMID: 35427301)
Science. 2012 Nov 30;338(6111):1177-83. (PMID: 23197527)
J Phys Chem B. 2013 Jul 18;117(28):8536-46. (PMID: 23777344)
Acc Chem Res. 2009 Dec 21;42(12):1890-8. (PMID: 19902921)
Molecules. 2021 Jan 20;26(3):. (PMID: 33498306)
Science. 2006 Oct 13;314(5797):281-5. (PMID: 16973839)
Nano Lett. 2017 Jun 14;17(6):3775-3781. (PMID: 28488874)
J Phys Chem B. 2009 Mar 12;113(10):2972-83. (PMID: 19708160)
J Chem Phys. 2020 Jan 7;152(1):014503. (PMID: 31914753)
Science. 1999 Aug 13;285(5430):1036-9. (PMID: 10446043)
J Am Chem Soc. 2019 Feb 6;141(5):2152-2160. (PMID: 30636401)
J Phys Chem B. 2016 Jan 28;120(3):440-54. (PMID: 26781668)
J Phys Chem B. 2021 Sep 16;125(36):10240-10259. (PMID: 34473494)
Faraday Discuss. 2019 Jul 11;216(0):211-235. (PMID: 31038134)
Acc Chem Res. 2009 Nov 17;42(11):1691-9. (PMID: 19653630)
Acc Chem Res. 2009 Dec 21;42(12):1910-21. (PMID: 19803479)
J Phys Chem Lett. 2021 Sep 23;12(37):8963-8971. (PMID: 34506152)
J Phys Chem A. 2018 Mar 1;122(8):2086-2095. (PMID: 29420037)
Nat Chem. 2019 Nov;11(11):981-986. (PMID: 31548665)
J Theor Biol. 1982 Nov 21;99(2):237-47. (PMID: 6188926)
Nature. 1998 Aug 6;394(6693):539-44. (PMID: 9707114)
J Phys Chem A. 2017 Sep 21;121(37):6905-6916. (PMID: 28813152)
Chem Rev. 2005 Aug;105(8):2999-3093. (PMID: 16092826)
J Phys Chem Lett. 2019 May 16;10(10):2386-2392. (PMID: 31010285)
Angew Chem Int Ed Engl. 2022 Feb 21;61(9):e202116783. (PMID: 34937127)
Chem Rev. 2016 Nov 23;116(22):13279-13412. (PMID: 27723323)
J Med Chem. 2021 Jun 24;64(12):8798-8805. (PMID: 34081463)
J Chem Theory Comput. 2012 Jul 10;8(7):2359-72. (PMID: 26588969)
ACS Nano. 2018 Jul 24;12(7):6410-6420. (PMID: 29920202)
Org Lett. 2012 Mar 2;14(5):1246-9. (PMID: 22320397)
Radiat Res. 1963 Sep;20:55-70. (PMID: 14061481)
Biopolymers. 2013 Dec;99(12):923-54. (PMID: 23840028)
Chem Rev. 2017 Jan 25;117(2):249-293. (PMID: 27428615)
Nat Nanotechnol. 2017 Jan;12(1):61-66. (PMID: 27749833)
Methods Enzymol. 2019;620:215-250. (PMID: 31072488)
تواريخ الأحداث: Date Created: 20230601 Date Completed: 20230615 Latest Revision: 20230621
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC10278143
DOI: 10.1021/acs.jpca.3c00562
PMID: 37261888
قاعدة البيانات: MEDLINE
الوصف
تدمد:1520-5215
DOI:10.1021/acs.jpca.3c00562