دورية أكاديمية

Effect of substituting glutamine with lysine on structural and biological properties of antimicrobial peptide Polybia-MP1.

التفاصيل البيبلوغرافية
العنوان: Effect of substituting glutamine with lysine on structural and biological properties of antimicrobial peptide Polybia-MP1.
المؤلفون: Phuong HBT; Faculty of Pharmacy, Phenikaa University, Hanoi, 12116, Vietnam., Tran VA; Faculty of Pharmacy, Phenikaa University, Hanoi, 12116, Vietnam., Ngoc KN; Faculty of Pharmacy, Phenikaa University, Hanoi, 12116, Vietnam., Huu VN; Faculty of Pharmacy, Phenikaa University, Hanoi, 12116, Vietnam., Thu HN; Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam., Van MC; Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam., Thi HP; Bioresource Research Center, Phenikaa University, Hanoi, 12116, Vietnam., Hong MN; Bioresource Research Center, Phenikaa University, Hanoi, 12116, Vietnam., Tran HT; Faculty of Pharmacy, Phenikaa University, Hanoi, 12116, Vietnam. hiep.tuantran@phenikaa-uni.edu.vn., Xuan HL; Faculty of Pharmacy, Phenikaa University, Hanoi, 12116, Vietnam. huy.luongxuan@phenikaa-uni.edu.vn.; Phenikaa Institute for Advanced Study (PIAS), Phenikaa University, Hanoi, 12116, Vietnam. huy.luongxuan@phenikaa-uni.edu.vn.
المصدر: Amino acids [Amino Acids] 2023 Jul; Vol. 55 (7), pp. 881-890. Date of Electronic Publication: 2023 Jun 10.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Austria NLM ID: 9200312 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1438-2199 (Electronic) Linking ISSN: 09394451 NLM ISO Abbreviation: Amino Acids Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Wien ; New York : Springer-Verlag, c1991-
مواضيع طبية MeSH: Anti-Infective Agents*/pharmacology , Antimicrobial Peptides*, Anti-Bacterial Agents/pharmacology ; Anti-Bacterial Agents/chemistry ; Glutamine/pharmacology ; Lysine/pharmacology ; Microbial Sensitivity Tests ; Wasp Venoms/chemistry
مستخلص: The natural antimicrobial peptide Polybia-MP1 is a promising candidate for developing new treatment therapy for infection and cancer. It showed broad-spectrum antimicrobial and anticancer activity with high safety on healthy cells. However, previous sequence modification usually resulted in at least one of two consequences: a notable increase in hemolytic activity or a considerable decrease in activity against Gram-negative bacteria and cancer cells. Herein, a new approach was applied by replacing the amino acid Glutamine at position 12 with Lysine and generating the MP1-Q12K analog. Our preliminary data suggested an enhancement in antibacterial and antifungal activity, whereas the anticancer and hemolytic activity of the two peptides were comparable. Moreover, MP1-Q12K was found to be less self-assembly than Polybia-MP1, which further supports the enhancement of antimicrobial properties. Hence, this study provides new information regarding the structure-activity relationships of Polybia-MP1 and support for the development of potent, selective antimicrobial peptides.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.)
References: Afshar A, Yuca E, Wisdom C, Alenezi H, Ahmed J, Tamerler C, Edirisinghe M (2021) Next-generation antimicrobial peptides (AMPs) incorporated nanofibre wound dressings. Med Devices Sens 4(1):e10144. https://doi.org/10.1002/mds3.10144. (PMID: 10.1002/mds3.10144)
Alvares DS, Fanani ML, Ruggiero Neto J, Wilke N (2016) The interfacial properties of the peptide polybia-MP1 and its interaction with DPPC are modulated by lateral electrostatic attractions. Biochim Biophys Acta 185(2):393–402. https://doi.org/10.1016/j.bbamem.2015.12.010. (PMID: 10.1016/j.bbamem.2015.12.010)
Alvares DS, Wilke N, Ruggiero Neto J, Fanani ML (2017) The insertion of polybia-MP1 peptide into phospholipid monolayers is regulated by its anionic nature and phase state. Chem Phys Lipid 207:38–48. https://doi.org/10.1016/j.chemphyslip.2017.08.001. (PMID: 10.1016/j.chemphyslip.2017.08.001)
da Silva AMB, Silva-Gonçalves LC, Oliveira FA, Arcisio-Miranda M (2018) Pro-necrotic activity of cationic mastoparan peptides in human glioblastoma multiforme cells via membranolytic action. Mol Neurobiol 55(7):5490–5504. https://doi.org/10.1007/s12035-017-0782-1. (PMID: 10.1007/s12035-017-0782-128965321)
de Souza BM, dos Santos Cabrera MP, Neto JR, Palma MS (2011) Investigating the effect of different positioning of lysine residues along the peptide chain of mastoparans for their secondary structures and biological activities. Amino Acids 40(1):77–90. https://doi.org/10.1007/s00726-010-0481-y. (PMID: 10.1007/s00726-010-0481-y20108158)
dos Santos Cabrera MP, Costa STB, de Souza BM, Palma MS, Ruggiero JR, Ruggiero Neto J (2008) Selectivity in the mechanism of action of antimicrobial mastoparan peptide Polybia-MP1. Eur Biophys J 37(6):879. https://doi.org/10.1007/s00249-008-0299-7. (PMID: 10.1007/s00249-008-0299-718414845)
dos Santos Cabrera MP, Arcisio-Miranda M, Gorjão R, Leite NB, de Souza BM, Curi R, Procopio J, Ruggiero Neto J, Palma MS (2012) Influence of the bilayer composition on the binding and membrane disrupting effect of polybia-MP1, an antimicrobial mastoparan peptide with leukemic T-lymphocyte cell selectivity. Biochemistry 51(24):4898–4908. https://doi.org/10.1021/bi201608d. (PMID: 10.1021/bi201608d22630563)
European Committee for Antimicrobial Susceptibility Testing of the European Society of Clinical M D Infectious (2003) Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin Microbiol Infect 9(8):ix–xv. https://doi.org/10.1046/j.1469-0691.2003.00790.x. (PMID: 10.1046/j.1469-0691.2003.00790.x)
Fritz JH, Brunner S, Birnstiel ML, Buschle M, Av G, Mattner F, Zauner W (2004) The artificial antimicrobial peptide KLKLLLLLKLK induces predominantly a TH2-type immune response to co-injected antigens. Vaccine 22(25):3274–3284. https://doi.org/10.1016/j.vaccine.2004.03.007. (PMID: 10.1016/j.vaccine.2004.03.00715308350)
Gautier R, Douguet D, Antonny B, Drin G (2008) HELIQUEST: a web server to screen sequences with specific α-helical properties. Bioinformatics 24(18):2101–2102. https://doi.org/10.1093/bioinformatics/btn392. (PMID: 10.1093/bioinformatics/btn39218662927)
Hien TT, Ambite I, Butler D, Wan MLY, Tran TH, Höglund U, Babjuk M, Svanborg C (2020) Bladder cancer therapy without toxicity—a dose-escalation study of alpha1-oleate. Int J Cancer 147(9):2479–2492. https://doi.org/10.1002/ijc.33019. (PMID: 10.1002/ijc.3301932319672)
Hodges RS, Zhu B-Y, Zhou NE, Mant CT (1994) Reversed-phase liquid chromatography as a useful probe of hydrophobic interactions involved in protein folding and protein stability. J Chromatogr A 676(1):3–15. https://doi.org/10.1016/0021-9673(94)80452-4. (PMID: 10.1016/0021-9673(94)80452-47921179)
Hofer U (2019) The cost of antimicrobial resistance. Nat Rev Microbiol 17(1):3–3. https://doi.org/10.1038/s41579-018-0125-x. (PMID: 10.1038/s41579-018-0125-x30467331)
Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta 177(2):357–375. https://doi.org/10.1016/j.bbamem.2007.11.008. (PMID: 10.1016/j.bbamem.2007.11.008)
Kazemzadeh-Narbat M, Cheng H, Chabok R, Alvarez MM, de la Fuente-Nunez C, Phillips KS, Khademhosseini A (2021) Strategies for antimicrobial peptide coatings on medical devices: a review and regulatory science perspective. Crit Rev Biotechnol 41(1):94–120. https://doi.org/10.1080/07388551.2020.1828810. (PMID: 10.1080/07388551.2020.182881033070659)
Kim Y-W, Grossmann TN, Verdine GL (2011) Synthesis of all-hydrocarbon stapled α-helical peptides by ring-closing olefin metathesis. Nat Protoc 6(6):761–771. https://doi.org/10.1038/nprot.2011.324. (PMID: 10.1038/nprot.2011.32421637196)
Koo HB, Seo J (2019) Antimicrobial peptides under clinical investigation. Pept Sci 111(5):e24122. https://doi.org/10.1002/pep2.24122. (PMID: 10.1002/pep2.24122)
Lazzaro BP, Zasloff M, Rolff J (2020) Antimicrobial peptides: application informed by evolution. Science 368(6490):5480. https://doi.org/10.1126/science.aau5480. (PMID: 10.1126/science.aau5480)
Lee DL, Mant CT, Hodges RS (2003) A novel method to measure self-association of small amphipathic molecules: temperature profiling in reversed-phase chromatography *. J Biol Chem 278(25):22918–22927. https://doi.org/10.1074/jbc.M301777200. (PMID: 10.1074/jbc.M30177720012686558)
Leite NB, da Costa LC, dos Santos AD, dos Santos Cabrera MP, de Souza BM, Palma MS, Ruggiero Neto J (2011) The effect of acidic residues and amphipathicity on the lytic activities of mastoparan peptides studied by fluorescence and CD spectroscopy. Amino Acids 40(1):91–100. https://doi.org/10.1007/s00726-010-0511-9. (PMID: 10.1007/s00726-010-0511-920195659)
Leite NB, dos Santos AD, de Souza BM, Palma MS, Ruggiero Neto J (2014) Effect of the aspartic acid D2 on the affinity of Polybia-MP1 to anionic lipid vesicles. Eur Biophys J 43(4):121–130. https://doi.org/10.1007/s00249-014-0945-1. (PMID: 10.1007/s00249-014-0945-124595375)
Leite Natália B, Aufderhorst-Roberts A, Palma Mario S, Connell Simon D, Neto João R, Beales Paul A (2015) PE and PS lipids synergistically enhance membrane poration by a peptide with anticancer properties. Biophys J 109(5):936–947. https://doi.org/10.1016/j.bpj.2015.07.033. (PMID: 10.1016/j.bpj.2015.07.033263312514564682)
Liu B, Zhang W, Gou S, Huang H, Yao J, Yang Z, Liu H, Zhong C, Liu B, Ni J, Wang R (2017) Intramolecular cyclization of the antimicrobial peptide Polybia-MPI with triazole stapling: influence on stability and bioactivity. J Pept Sci 23(11):824–832. https://doi.org/10.1002/psc.3031. (PMID: 10.1002/psc.303128833783)
Luong HX, Kim D-H, Lee B-J, Kim Y-W (2016) Antimicrobial and hemolytic activity of stapled heptapeptide dimers. Bull Korean Chem Soc 37(8):1199–1203. https://doi.org/10.1002/bkcs.10839. (PMID: 10.1002/bkcs.10839)
Luong HX, Kim D-H, Lee B-J, Kim Y-W (2017) Antimicrobial activity and stability of stapled helices of polybia-MP1. Arch Pharmacal Res 40(12):1414–1419. https://doi.org/10.1007/s12272-017-0963-5. (PMID: 10.1007/s12272-017-0963-5)
Luong HX, Thanh TT, Tran TH (2020) Antimicrobial peptides—advances in development of therapeutic applications. Life Sci 260:118407. https://doi.org/10.1016/j.lfs.2020.118407. (PMID: 10.1016/j.lfs.2020.118407329317967486823)
Luong HX, Ngan HD, Thi Phuong HB, Quoc TN, Tung TT (2022) Multiple roles of ribosomal antimicrobial peptides in tackling global antimicrobial resistance. Royal Soc Open Sci 9(1):211583. https://doi.org/10.1098/rsos.211583. (PMID: 10.1098/rsos.211583)
Mant CT, Jiang Z, Gera L, Davis T, Nelson KL, Bevers S, Hodges RS (2019) De novo designed amphipathic α-helical antimicrobial peptides incorporating Dab and Dap residues on the polar face to treat the gram-negative pathogen, acinetobacter baumannii. J Med Chem 62(7):3354–3366. https://doi.org/10.1021/acs.jmedchem.8b01785. (PMID: 10.1021/acs.jmedchem.8b01785308485946886721)
Martins IBS, Viegas TG, dos Santos AD, de Souza BM, Palma MS, Ruggiero Neto J, de Araujo AS (2021) The effect of acidic pH on the adsorption and lytic activity of the peptides Polybia-MP1 and its histidine-containing analog in anionic lipid membrane: a biophysical study by molecular dynamics and spectroscopy. Amino Acids 53(5):753–767. https://doi.org/10.1007/s00726-021-02982-0. (PMID: 10.1007/s00726-021-02982-033890127)
Nguyen MH, Ojima Y, Kawata T, Taya M (2013) Alternation in colonization behaviors of Escherichia coli cells with rpoS or yggE deficiency on solid surfaces. Biotechnol Bioeng 110(4):1050–1056. https://doi.org/10.1002/bit.24770. (PMID: 10.1002/bit.2477023097194)
W.H. Organization (2015) Global action plan on antimicrobial resistance. https://www.who.int/publications/i/item/9789241509763.
Riool M, de Breij A, Drijfhout JW, Nibbering PH, Zaat SAJ (2017) Antimicrobial peptides in biomedical device manufacturing. Front Chem. https://doi.org/10.3389/fchem.2017.00063. (PMID: 10.3389/fchem.2017.00063289710935609632)
Rodrigues G, Maximiano MR, Franco OL (2021) Antimicrobial peptides used as growth promoters in livestock production. Appl Microbiol Biotechnol 105(19):7115–7121. https://doi.org/10.1007/s00253-021-11540-3. (PMID: 10.1007/s00253-021-11540-334499200)
Shah P, Shrivastava S, Gogoi P, Saxena S, Srivastava S, Singh RJ, Godara B, Kumar N, Gaur GK (2022) Wasp venom peptide (Polybia MP-1) shows antimicrobial activity against multi drug resistant bacteria isolated from mastitic cow milk. Int J Pept Res Ther 28(1):44. https://doi.org/10.1007/s10989-021-10355-0. (PMID: 10.1007/s10989-021-10355-0)
Souza BM, Mendes MA, Santos LD, Marques MR, César LMM, Almeida RNA, Pagnocca FC, Konno K, Palma MS (2005) Structural and functional characterization of two novel peptide toxins isolated from the venom of the social wasp Polybia paulista. Peptides 26(11):2157–2164. https://doi.org/10.1016/j.peptides.2005.04.026. (PMID: 10.1016/j.peptides.2005.04.02616129513)
Tacconelli E, Sifakis F, Harbarth S, Schrijver R, van Mourik M, Voss A, Sharland M, Rajendran NB, Rodríguez-Baño J, Bielicki J, de Kraker M, Gandra S, Gastmeier P, Gilchrist K, Gikas A, Gladstone BP, Goossens H, Jafri H, Kahlmeter G, Leus F, Luxemburger C, Malhotra-Kumar S, Marasca G, McCarthy M, Navarro MD, Nuñez-Nuñez M, Oualim A, Price J, Robert J, Sommer H, von Cube M, Vuong C, Wiegand I, Witschi AT, Wolkewitz M (2018) Surveillance for control of antimicrobial resistance. Lancet Infect Dis 18(3):e99–e106. https://doi.org/10.1016/S1473-3099(17)30485-1. (PMID: 10.1016/S1473-3099(17)30485-129102325)
Tan P, Fu H, Ma X (2021) Design, optimization, and nanotechnology of antimicrobial peptides: from exploration to applications. Nano Today 39:101229. https://doi.org/10.1016/j.nantod.2021.101229. (PMID: 10.1016/j.nantod.2021.101229)
Tornesello AL, Borrelli A, Buonaguro L, Buonaguro FM, Tornesello ML (2020) Antimicrobial peptides as anticancer agents: functional properties and biological activities. Molecules. https://doi.org/10.3390/molecules25122850. (PMID: 10.3390/molecules25122850325756647356147)
Valdez-Miramontes CE, De Haro-Acosta J, Aréchiga-Flores CF, Verdiguel-Fernández L, Rivas-Santiago B (2021) Antimicrobial peptides in domestic animals and their applications in veterinary medicine. Peptides 142:170576. https://doi.org/10.1016/j.peptides.2021.170576. (PMID: 10.1016/j.peptides.2021.17057634033877)
Wang K-r, Zhang B-z, Zhang W, Yan J-x, Li J, Wang R (2008) Antitumor effects, cell selectivity and structure–activity relationship of a novel antimicrobial peptide polybia-MPI. Peptides 29(6):963–968. https://doi.org/10.1016/j.peptides.2008.01.015. (PMID: 10.1016/j.peptides.2008.01.01518328599)
Xuan HL, Duc TD, Thuy AM, Chau PM, Tung TT (2021) Chemical approaches in the development of natural nontoxic peptide Polybia-MP1 as a potential dual antimicrobial and antitumor agent. Amino Acids 53(6):843–852. https://doi.org/10.1007/s00726-021-02995-9. (PMID: 10.1007/s00726-021-02995-933948731)
معلومات مُعتمدة: 2-01.2020.02 The PHENIKAA University Foundation for Science and Technology Development
فهرسة مساهمة: Keywords: Antimicrobial peptides; Polybia-MP1; Structural-activity relationships
المشرفين على المادة: 0 (Anti-Bacterial Agents)
0 (Anti-Infective Agents)
0 (Antimicrobial Peptides)
0RH81L854J (Glutamine)
K3Z4F929H6 (Lysine)
0 (Wasp Venoms)
0 (Polybia-MP1)
تواريخ الأحداث: Date Created: 20230610 Date Completed: 20240116 Latest Revision: 20240116
رمز التحديث: 20240117
DOI: 10.1007/s00726-023-03276-3
PMID: 37300579
قاعدة البيانات: MEDLINE
الوصف
تدمد:1438-2199
DOI:10.1007/s00726-023-03276-3