دورية أكاديمية

Antifungal Activity of Nanobiocomposite Films Based on Silver Nanoparticles Obtained Through Green Synthesis.

التفاصيل البيبلوغرافية
العنوان: Antifungal Activity of Nanobiocomposite Films Based on Silver Nanoparticles Obtained Through Green Synthesis.
المؤلفون: Mallmann EJJ; Grupo de Química de Materiais Avançados (GQMat) - Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará (UFC), Campus do Pici, CP 12100, Fortaleza, CE, 60451-970, Brazil., Cunha FA; Grupo de Química de Materiais Avançados (GQMat) - Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará (UFC), Campus do Pici, CP 12100, Fortaleza, CE, 60451-970, Brazil.; Departamento de Análises Clínicas e Toxicológicas da Universidade Federal do Ceará-UFC, Rua Capitão Francisco Pedro 1210, Rodolfo Teófilo, Fortaleza, CE, 60270-430, Brazil., Agressott EVH; Departamento de Física, Universidade Federal do Ceará (UFC), Campus do Pici, Caixa Postal 6030, Fortaleza, CE, 60440-970, Brazil., de Menezes FL; Grupo de Química de Materiais Avançados (GQMat) - Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará (UFC), Campus do Pici, CP 12100, Fortaleza, CE, 60451-970, Brazil., de Cássia Carvalho Barbosa R; Departamento de Análises Clínicas e Toxicológicas da Universidade Federal do Ceará-UFC, Rua Capitão Francisco Pedro 1210, Rodolfo Teófilo, Fortaleza, CE, 60270-430, Brazil., Martins RT; Laboratório de Análises Clínicas e Toxicológicas da Universidade Federal do Ceará, Fortaleza, Brazil., Dos Santos Oliveira Cunha MDC; Universidade Estadual do Ceará. Programa de Pós-Graduação Cuidados Clínicos em Enfermagem e Saúde, Fortaleza, Ceará, Brazil.; Professora da Faculdade Princesa do Oeste, Crateus, Ceará, Brazil., Queiroz MVO; Universidade Estadual do Ceará. Programa de Pós-Graduação Cuidados Clínicos em Enfermagem e Saúde, Fortaleza, Ceará, Brazil., Coutinho HDM; Laboratorio de Microbiologia e Biologia Molecular, Departamento de Biologia Química, Universidade Regional do Cariri-URCA, Crato, Brazil. hdmcoutinho@gmail.com., de Vasconcelos JEL; CECAPE College, Juazeiro do Norte, Av. Padre Cícero, 3917, São José, CE, 63024-015, Brazil., Fechine PBA; Grupo de Química de Materiais Avançados (GQMat) - Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará (UFC), Campus do Pici, CP 12100, Fortaleza, CE, 60451-970, Brazil. fechine@ufc.br.
المصدر: Current microbiology [Curr Microbiol] 2023 Jun 23; Vol. 80 (8), pp. 251. Date of Electronic Publication: 2023 Jun 23.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer International Country of Publication: United States NLM ID: 7808448 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-0991 (Electronic) Linking ISSN: 03438651 NLM ISO Abbreviation: Curr Microbiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, Springer International.
مواضيع طبية MeSH: Antifungal Agents*/pharmacology , Metal Nanoparticles*/chemistry, Silver/pharmacology ; Microscopy, Electron, Scanning ; Plant Extracts/chemistry ; Spectroscopy, Fourier Transform Infrared ; Anti-Bacterial Agents/pharmacology
مستخلص: The high incidence of Candida albicans infections has raised concerns regarding side effects and drug resistance, compounded by a limited number of alternative drugs. Silver nanoparticles (AgNPs) have prominent antimicrobial activity, but effective administration remains a challenge. In this study, AgNPs were synthesized via a green chemistry approach, using glucose as a reducing agent, and incorporated into an agar matrix to form a film (AgFilm). The AgNPs and AgFilm were characterized by Ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), and atomic force microscopic (AFM). The UV-Vis spectra of the AgNPs and AgFilm showed bands at 415 and 413 nm, respectively. The PXRD and UV-Vis data suggest that the growth of AgNPs was effectively inhibited in the AgFilm. The diameter of AgNPs dispersed in AgFilm was 76 ± 42 nm, and the thickness of the film and 35 ± 3 µm. The antifungal activity of AgFilm was evaluated against 20 strains of C. albicans, demonstrating high antifungal activity with an inhibition zone of 19 ± 2 mm. Therefore, AgFilm could be a promising option for the treatment of superficial C. albicans infections.
(© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Rayens E, Norris KA (2022) Prevalence and healthcare burden of fungal infections in the United States, 2018. Open Forum Infect Dis. https://doi.org/10.1093/OFID/OFAB593. (PMID: 10.1093/OFID/OFAB593350364618754384)
Zhou L, Zhao X, Li M et al (2021) Antifungal activity of silver nanoparticles synthesized by iturin against Candida albicans in vitro and in vivo. Appl Microbiol Biotechnol 105:3759–3770. https://doi.org/10.1007/S00253-021-11296-W/FIGURES/8. (PMID: 10.1007/S00253-021-11296-W/FIGURES/833900424)
Jia D, Sun W (2021) Silver nanoparticles offer a synergistic effect with fluconazole against fluconazole-resistant Candida albicans by abrogating drug efflux pumps and increasing endogenous ROS. Infect Genet Evol 93:104937. https://doi.org/10.1016/J.MEEGID.2021.104937. (PMID: 10.1016/J.MEEGID.2021.10493734029724)
Nadhe SB, Singh R, Wadhwani SA, Chopade BA (2019) Acinetobacter sp. mediated synthesis of AgNPs, its optimization, characterization and synergistic antifungal activity against C. albicans. J Appl Microbiol 127:445–458. https://doi.org/10.1111/JAM.14305. (PMID: 10.1111/JAM.1430531074075)
Soumbo M, Scarangella A, Villeneuve-Faure C et al (2020) Combined effect of proteins and AgNPs on the adhesion of yeast Candida albicans on solid silica surfaces. Proc IEEE Conf Nanotechnol. https://doi.org/10.1109/NANO47656.2020.9183494. (PMID: 10.1109/NANO47656.2020.9183494)
Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38:1629–1652. https://doi.org/10.1016/J.PROGPOLYMSCI.2013.05.008. (PMID: 10.1016/J.PROGPOLYMSCI.2013.05.008)
Seo SY, Lee GH, Lee SG et al (2012) Alginate-based composite sponge containing silver nanoparticles synthesized in situ. Carbohydr Polym 90:109–115. https://doi.org/10.1016/J.CARBPOL.2012.05.002. (PMID: 10.1016/J.CARBPOL.2012.05.00224751017)
Cheviron P, Gouanvé F, Espuche E (2014) Green synthesis of colloid silver nanoparticles and resulting biodegradable starch/silver nanocomposites. Carbohydr Polym 108:291–298. https://doi.org/10.1016/J.CARBPOL.2014.02.059. (PMID: 10.1016/J.CARBPOL.2014.02.05924751276)
Hassabo AG, Nada AA, Ibrahim HM, Abou-Zeid NY (2015) Impregnation of silver nanoparticles into polysaccharide substrates and their properties. Carbohydr Polym 122:343–350. https://doi.org/10.1016/J.CARBPOL.2014.03.009. (PMID: 10.1016/J.CARBPOL.2014.03.00925817678)
de Paula GA, Costa NN, da Silva TM et al (2022) Polymeric film containing pomegranate peel extract as a promising tool for the treatment of candidiasis. Nat Prod Res. https://doi.org/10.1080/14786419.2022.2064464/SUPPL_FILE/GNPL_A_2064464_SM9878.PDF. (PMID: 10.1080/14786419.2022.2064464/SUPPL_FILE/GNPL_A_2064464_SM9878.PDF35437076)
Ghosh S, Kaushik R, Nagalakshmi K et al (2010) Antimicrobial activity of highly stable silver nanoparticles embedded in agar–agar matrix as a thin film. Carbohydr Res 345:2220–2227. https://doi.org/10.1016/J.CARRES.2010.08.001. (PMID: 10.1016/J.CARRES.2010.08.00120800222)
Muthuswamy E, Ramadevi SS, Vasan HN et al (2007) Highly stable Ag nanoparticles in agar-agar matrix as inorganic-organic hybrid. J Nanoparticle Res 9:561–567. https://doi.org/10.1007/S11051-006-9071-Z/METRICS. (PMID: 10.1007/S11051-006-9071-Z/METRICS)
Silva TH, Alves A, Ferreira BM, et al (2013) Materials of marine origin: a review on polymers and ceramics of biomedical interest. 57:276–307. https://doi.org/10.1179/1743280412Y.0000000002.
Rhim JW, Wang LF, Hong SI (2013) Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocoll 33:327–335. https://doi.org/10.1016/J.FOODHYD.2013.04.002. (PMID: 10.1016/J.FOODHYD.2013.04.002)
Shukla MK, Singh RP, Reddy CRK, Jha B (2012) Synthesis and characterization of agar-based silver nanoparticles and nanocomposite film with antibacterial applications. Bioresour Technol 107:295–300. https://doi.org/10.1016/J.BIORTECH.2011.11.092. (PMID: 10.1016/J.BIORTECH.2011.11.09222244898)
Rhim JW, Wang LF, Lee Y, Hong SI (2014) Preparation and characterization of bio-nanocomposite films of agar and silver nanoparticles: Laser ablation method. Carbohydr Polym 103:456–465. https://doi.org/10.1016/J.CARBPOL.2013.12.075. (PMID: 10.1016/J.CARBPOL.2013.12.07524528754)
Cunha FA, da Cunha MCSO, da Frota SM et al (2018) Biogenic synthesis of multifunctional silver nanoparticles from Rhodotorula glutinis and Rhodotorula mucilaginosa: antifungal, catalytic and cytotoxicity activities. World J Microbiol Biotechnol 34:1–15. https://doi.org/10.1007/s11274-018-2514-8. (PMID: 10.1007/s11274-018-2514-8)
Mallmann EJJ, Cunha FA, Castro BNMF et al (2015) Antifungal activity of silver nanoparticles obtained by green synthesis. Rev Inst Med Trop Sao Paulo 57:165–167. https://doi.org/10.1590/s0036-46652015000200011. (PMID: 10.1590/s0036-46652015000200011259238974435016)
Kanmani P, Rhim JW (2014) Antimicrobial and physical-mechanical properties of agar-based films incorporated with grapefruit seed extract. Carbohydr Polym 102:708–716. https://doi.org/10.1016/J.CARBPOL.2013.10.099. (PMID: 10.1016/J.CARBPOL.2013.10.09924507339)
Viana RB, Da Silva ABF, Pimentel AS (2012) Infrared spectroscopy of anionic, cationic, and zwitterionic surfactants. Adv Phys Chem. https://doi.org/10.1155/2012/903272. (PMID: 10.1155/2012/903272)
Azócar I, Vargas E, Duran N et al (2012) Preparation and antibacterial properties of hybrid-zirconia films with silver nanoparticles. Mater Chem Phys 137:396–403. https://doi.org/10.1016/J.MATCHEMPHYS.2012.09.042. (PMID: 10.1016/J.MATCHEMPHYS.2012.09.042)
Zhao X, Xia Y, Li Q et al (2014) Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial activity. Colloids Surf A 444:180–188. https://doi.org/10.1016/J.COLSURFA.2013.12.008. (PMID: 10.1016/J.COLSURFA.2013.12.008)
Kumar S, Jahan K, Verma A et al (2022) Agar-based composite films as effective biodegradable sound absorbers. ACS Sustain Chem Eng 10:8242–8253. https://doi.org/10.1021/ACSSUSCHEMENG.2C00168/ASSET/IMAGES/LARGE/SC2C00168_0008.JPEG. (PMID: 10.1021/ACSSUSCHEMENG.2C00168/ASSET/IMAGES/LARGE/SC2C00168_0008.JPEG)
Audeh DJSA, Alcázar JB, Barbosa CV et al (2014) Influence of the NiO nanoparticles on the ionic conductivity of the agar-based electrolyte. Polimeros 24:8–12. https://doi.org/10.4322/POLIMEROS.2014.055/PDF/POLIMEROS-24-ESPECIAL-8.PDF. (PMID: 10.4322/POLIMEROS.2014.055/PDF/POLIMEROS-24-ESPECIAL-8.PDF)
Pandey S, Goswami GK, Nanda KK (2012) Green synthesis of biopolymer–silver nanoparticle nanocomposite: an optical sensor for ammonia detection. Int J Biol Macromol 51:583–589. https://doi.org/10.1016/J.IJBIOMAC.2012.06.033. (PMID: 10.1016/J.IJBIOMAC.2012.06.03322750580)
Pinto RJB, Fernandes SCM, Freire CSR et al (2012) Antibacterial activity of optically transparent nanocomposite films based on chitosan or its derivatives and silver nanoparticles. Carbohydr Res 348:77–83. https://doi.org/10.1016/J.CARRES.2011.11.009. (PMID: 10.1016/J.CARRES.2011.11.00922154478)
Kim SC, Kim JW, Yoon GJ et al (2013) Antifungal effects of 3D scaffold type gelatin/Ag nanoparticles biocomposite prepared by solution plasma processing. Curr Appl Phys 13:S48–S53. https://doi.org/10.1016/J.CAP.2013.01.035. (PMID: 10.1016/J.CAP.2013.01.035)
Pinto RJB, Almeida A, Fernandes SCM et al (2013) Antifungal activity of transparent nanocomposite thin films of pullulan and silver against Aspergillus niger. Colloids Surf B 103:143–148. https://doi.org/10.1016/J.COLSURFB.2012.09.045. (PMID: 10.1016/J.COLSURFB.2012.09.045)
Kahrilas GA, Haggren W, Read RL et al (2014) Investigation of antibacterial activity by silver nanoparticles prepared by microwave-assisted green syntheses with soluble starch, dextrose, and arabinose. ACS Sustain Chem Eng 2:590–598. https://doi.org/10.1021/SC400487X/SUPPL_FILE/SC400487X_SI_001.PDF. (PMID: 10.1021/SC400487X/SUPPL_FILE/SC400487X_SI_001.PDF)
Pettegrew C, Dong Z, Muhi MZ et al (2014) Silver nanoparticle synthesis using monosaccharides and their growth inhibitory activity against gram-negative and positive bacteria. ISRN Nanotechnol 2014:1–8. https://doi.org/10.1155/2014/480284. (PMID: 10.1155/2014/480284)
Tan Z, Abe H, Naito M, Ohara S (2010) Oriented growth behavior of Ag nanoparticles using SDS as a shape director. J Colloid Interface Sci 348:289–292. https://doi.org/10.1016/J.JCIS.2010.04.018. (PMID: 10.1016/J.JCIS.2010.04.01820483430)
Slistan-Grijalva A, Herrera-Urbina R, Rivas-Silva JF et al (2005) Assessment of growth of silver nanoparticles synthesized from an ethylene glycol–silver nitrate–polyvinylpyrrolidone solution. Physica E 25:438–448. https://doi.org/10.1016/J.PHYSE.2004.07.010. (PMID: 10.1016/J.PHYSE.2004.07.010)
Slistan-Grijalva A, Herrera-Urbina R, Rivas-Silva JF et al (2005) Classical theoretical characterization of the surface plasmon absorption band for silver spherical nanoparticles suspended in water and ethylene glycol. Physica E 27:104–112. https://doi.org/10.1016/J.PHYSE.2004.10.014. (PMID: 10.1016/J.PHYSE.2004.10.014)
Jain S, Mehata MS (2017) Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Sci Rep 71(7):1–13. https://doi.org/10.1038/s41598-017-15724-8. (PMID: 10.1038/s41598-017-15724-8)
Thirumagal N, Jeyakumari AP (2020) Structural, optical and antibacterial properties of green synthesized silver nanoparticles (AgNPs) using Justicia adhatoda L. leaf extract. J Clust Sci 31:487–497. https://doi.org/10.1007/S10876-019-01663-Z/TABLES/2. (PMID: 10.1007/S10876-019-01663-Z/TABLES/2)
López-Miranda JL, Esparza R, González-Reyna MA et al (2021) Sargassum influx on the mexican coast: a source for synthesizing silver nanoparticles with catalytic and antibacterial properties. Appl Sci 11:4638. https://doi.org/10.3390/APP11104638. (PMID: 10.3390/APP11104638)
Goswami AM, Sarkar TS, Ghosh S (2013) An ecofriendly synthesis of silver nano-bioconjugates by penicillium citrinum (MTCC9999) and its antimicrobial effect. AMB Express 3:1–9. https://doi.org/10.1186/2191-0855-3-16/FIGURES/5. (PMID: 10.1186/2191-0855-3-16/FIGURES/5)
Gao Y, Ma Q (2022) Bacterial infection microenvironment-responsive porous microspheres by microfluidics for promoting anti-infective therapy. Smart Med. https://doi.org/10.1002/SMMD.20220012. (PMID: 10.1002/SMMD.20220012)
Abraham L, Thomas T, Pichumani M (2022) Vivid structural colors of photonic crystals: self-assembly of monodisperse silica nano-colloids synthesized using an anionic surfactant. Chem Phys 563:111682. https://doi.org/10.1016/J.CHEMPHYS.2022.111682. (PMID: 10.1016/J.CHEMPHYS.2022.111682)
Kanmani P, Rhim JW (2014) Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydr Polym 106:190–199. https://doi.org/10.1016/J.CARBPOL.2014.02.007. (PMID: 10.1016/J.CARBPOL.2014.02.00724721068)
Tran PA, Hocking DM, O’Connor AJ (2015) In situ formation of antimicrobial silver nanoparticles and the impregnation of hydrophobic polycaprolactone matrix for antimicrobial medical device applications. Mater Sci Eng C 47:63–69. https://doi.org/10.1016/J.MSEC.2014.11.016. (PMID: 10.1016/J.MSEC.2014.11.016)
Khorasani S, Ghandehari Yazdi AP, Saadatfar A et al (2022) Valorization of saffron tepals for the green synthesis of silver nanoparticles and evaluation of their efficiency against foodborne pathogens. Waste Biomass Valorization 13:4417–4430. https://doi.org/10.1007/S12649-022-01791-0/FIGURES/10. (PMID: 10.1007/S12649-022-01791-0/FIGURES/10)
Khatoon UT, Velidandi A, Nageswara Rao GVS (2023) Sodium borohydride mediated synthesis of nano-sized silver particles: their characterization, anti-microbial and cytotoxicity studies. Mater Chem Phys. https://doi.org/10.1016/J.MATCHEMPHYS.2022.126997. (PMID: 10.1016/J.MATCHEMPHYS.2022.126997)
Malathi S, Manikandan D, Nishanthi R et al (2022) Silver nanoparticles, synthesized using Hyptis suaveolens (L.) Poit and their antifungal activity against Candida spp. ChemistrySelect 7:e202203050. https://doi.org/10.1002/SLCT.202203050. (PMID: 10.1002/SLCT.202203050)
Ediyilyam S, George B, Shankar SS et al (2021) Chitosan/gelatin/silver nanoparticles composites films for biodegradable food packaging applications. Polymers (Basel) 13:1680. https://doi.org/10.3390/POLYM13111680/S1. (PMID: 10.3390/POLYM13111680/S134064040)
Peršin Z, Maver U, Pivec T et al (2014) Novel cellulose based materials for safe and efficient wound treatment. Carbohydr Polym 100:55–64. https://doi.org/10.1016/J.CARBPOL.2013.03.082. (PMID: 10.1016/J.CARBPOL.2013.03.08224188838)
المشرفين على المادة: 0 (Antifungal Agents)
3M4G523W1G (Silver)
0 (Plant Extracts)
0 (Anti-Bacterial Agents)
تواريخ الأحداث: Date Created: 20230623 Date Completed: 20230626 Latest Revision: 20230715
رمز التحديث: 20231215
DOI: 10.1007/s00284-023-03357-2
PMID: 37351656
قاعدة البيانات: MEDLINE