Editorial & Opinion

Models of underlying autotrophic biomass dynamics fit to daily river ecosystem productivity estimates improve understanding of ecosystem disturbance and resilience.

التفاصيل البيبلوغرافية
العنوان: Models of underlying autotrophic biomass dynamics fit to daily river ecosystem productivity estimates improve understanding of ecosystem disturbance and resilience.
المؤلفون: Blaszczak JR; Department of Natural Resources and Environmental Science, University of Nevada, Reno, Nevada, USA.; Flathead Lake Biological Station, University of Montana, Polson, Montana, USA., Yackulic CB; U.S. Geological Survey, Southwest Biological Science Center, Flagstaff, Arizona, USA., Shriver RK; Department of Natural Resources and Environmental Science, University of Nevada, Reno, Nevada, USA., Hall RO Jr; Flathead Lake Biological Station, University of Montana, Polson, Montana, USA.
المصدر: Ecology letters [Ecol Lett] 2023 Sep; Vol. 26 (9), pp. 1510-1522. Date of Electronic Publication: 2023 Jun 23.
نوع المنشور: Letter
اللغة: English
بيانات الدورية: Publisher: Blackwell Publishing Country of Publication: England NLM ID: 101121949 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1461-0248 (Electronic) Linking ISSN: 1461023X NLM ISO Abbreviation: Ecol Lett Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford, UK : Blackwell Publishing
Original Publication: Oxford, UK : [Paris, France] : Blackwell Science ; Centre national de la recherche scientifique, c1998-
مواضيع طبية MeSH: Ecosystem* , Rivers*, Biomass ; Time Factors ; Carbon Cycle
مستخلص: Directly observing autotrophic biomass at ecologically relevant frequencies is difficult in many ecosystems, hampering our ability to predict productivity through time. Since disturbances can impart distinct reductions in river productivity through time by modifying underlying standing stocks of biomass, mechanistic models fit to productivity time series can infer underlying biomass dynamics. We incorporated biomass dynamics into a river ecosystem productivity model for six rivers to identify disturbance flow thresholds and understand the resilience of primary producers. The magnitude of flood necessary to disturb biomass and thereby reduce ecosystem productivity was consistently lower than the more commonly used disturbance flow threshold of the flood magnitude necessary to mobilize river bed sediment. The estimated daily maximum percent increase in biomass (a proxy for resilience) ranged from 5% to 42% across rivers. Our latent biomass model improves understanding of disturbance thresholds and recovery patterns of autotrophic biomass within river ecosystems.
(© 2023 John Wiley & Sons Ltd.)
References: Appling, A.P., Hall, R.O., Yackulic, C.B. & Arroita, M. (2018) Overcoming equifinality: leveraging long time series for stream metabolism estimation. Journal of Geophysical Research: Biogeosciences, 123(2), 624-645.
Appling, A.P., Read, J.S., Winslow, L.A., Arroita, M., Bernhardt, E.S., Griffiths, N.A. et al. (2018) The metabolic regimes of 356 rivers in the United States. Scientific Data, 5, 180292.
Auger-Méthé, M., Newman, K., Cole, D., Empacher, F., Gryba, R., King, A.A. et al. (2021) A guide to state-space modeling of ecological time series. Ecological Monographs, 91(4), 1-61.
Battin, T.J., Lauerwald, R., Bernhardt, E.S., Bertuzzo, E., Gener, L.G., Hall, R.O. et al. (2023) River ecosystem metabolism and carbon biogeochemistry in a changing world. Nature, 613(7944), 449-459.
Bernhardt, E.S., Savoy, P., Vlah, M.J., Appling, A.P., Koenig, L.E., Hall, R.O. et al. (2022) Light and flow regimes regulate the metabolism of rivers. Proceedings of the National Academy of Sciences of the United States of America, 119(8), 1-5.
Biggs, B.J.F. (2000) Eutrophication of streams and rivers: dissolved nutrient-chlorophyll relationships for benthic algae. Journal of the North American Benthological Society, 19(1), 17-31.
Blaszczak, J.R., Koenig, L.E., Mejia, F.H., Gómez-Gener, L., Dutton, C.L., Carter, A.M. et al. (2021) Distribution, frequency, and global extent of hypoxia in rivers: U.S. Geological Survey Data Release. https://doi.org/10.5066/P99X6SIR.
Bormann, F.H. & Likens, G.E. (1967) Nutrient cycling. Science, 155(3761), 424-429.
Buffington, J.M. & Montgomery, D.R. (1997) A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers. Water Resources Research, 33(8), 1991-2029.
Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B., Betancourt, M. et al. (2017) Stan: a probabilistic programming language. Journal of Statistical Software, 76(1), 1-32.
Currie, D.J. (2019) Where Newton might have taken ecology. Global Ecology and Biogeography, 28(1), 18-27.
Deemer, B.R., Yackulic, C.B., Hall, R.O., Jr, M.J., Dodrill, T.A., Kennedy, J.D. et al. (2022) Experimental reductions in subdaily flow fluctuations increased gross primary productivity for 425 river kilometers downstream. PNAS Nexus, 1(3), pgac094.
Dietze, M.C. (2017) Prediction in ecology: a first-principles framework. Ecological Applications, 27(7), 2048-2060.
Doyle, M.W., Stanley, E.H., Strayer, D.L., Jacobson, R.B. & Schmidt, J.C. (2005) Effective discharge analysis of ecological processes in streams. Water Resources Research, 41, 1-16.
Farquhar, G.D., Caemmerer, S. & Berry, J.A. (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149(1), 78-90.
Fisher, R.A., Koven, C.D., Anderegg, W.R.L., Christoffersen, B.O., Dietze, M.C., Farrior, C.E. et al. (2018) Vegetation demographics in earth system models: a review of progress and priorities. Global Change Biology, 24(1), 35-54.
Gelman, A., Hwang, J. & Vehtari, A. (2014) Understanding predictive information criteria for Bayesian models. Statistics and Computing, 24(6), 997-1016.
Genzoli, L. & Hall, R.O. (2016) Shifts in Klamath River metabolism following a reservoir cyanobacterial bloom. Freshwater Science, 35(3), 795-809.
Getz, W.M., Marshall, C.R., Carlson, C.J., Giuggioli, L., Ryan, S.J., Romañach, S.S. et al. (2018) Making ecological models adequate. Ecology Letters, 21(2), 153-166.
Graba, M., Sauvage, S., Majdi, N., Mialet, B., Moulin, F.Y., Urrea, G. et al. (2014) Modelling epilithic biofilms combining hydrodynamics, invertebrate grazing, and algal traits. Freshwater Biology, 59(6), 1213-1228.
Grimm, N.B. & Fisher, S.G. (1989) Stability of periphyton and macroinvertebrates to disturbance by flash floods in a desert stream. Journal of the North American Benthological Society, 8(4), 293-307.
Hall, R.O., Yackulic, C.B., Kennedy, T.A., Yard, M.D., Rosi-Marshall, E.J., Voichick, N. et al. (2015) Turbidity, light, temperature, and hydropeaking control primary productivity in the Colorado River, Grand Canyon. Limnology & Oceanography, 60(2), 512-526.
Hobbs, T.N. & Hooten, M.B. (2015) Bayesian models: a statistical primer for ecologists. Princeton, NJ: Princeton University Press.
Hondzo, M. & Wang, H. (2002) Effects of turbulence on growth and metabolism of periphyton in a laboratory flume. Water Resources Research, 38(12), 1277-13-9.
Hooten, M.B. & Hobbs, N.T. (2015) A guide to Bayesian model selection for ecologists. Ecological Monographs, 85(1), 3-28.
Hornberger, G.M., Raffensperger, J.P., Wiberg, P.L. & Eshleman, K.N. (1998) Elements of physical hydrology. Baltimore and London: Johns Hopkins University Press.
Huryn, A.D., Benstead, J.P. & Parker, S.M. (2014) Seasonal changes in light availability modify the temperature dependence of ecosystem metabolism in an arctic stream. Ecology, 95(10), 2840-2850.
Jassby, A.D. & Platt, T. (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnology and Oceanography, 21(4), 540-547.
Jiménez, L., Freixa, A., Besoli, N. & Sabater, S. (2023) Resistance but not recovery is related to the role of specialist taxa in river communities submitted to hydric stress. Science of the Total Environment, 871, 161952.
Junk, W.J., Bayley, P.B., Sparks, R.E. et al. (1989) The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences, 106(1), 110-127.
Keck, F. & Lepori, F. (2012) Can we predict nutrient limitation in streams and rivers? Freshwater Biology, 57(7), 1410-1421.
Kirk, L., Hensley, R.T., Savoy, P., Heffernan, J.B. & Cohen, M.J. (2021) Estimating benthic light regimes improves predictions of primary production and constrains light-use efficiency in streams and rivers. Ecosystems, 24(4), 825-839.
Lisenby, P.E., Croke, J. & Fryirs, K.A. (2018) Geomorphic effectiveness: a linear concept in a non-linear world. Earth Surface Processes and Landforms, 43(1), 4-20.
Mao, L. & Surian, N. (2010) Observations on sediment mobility in a large gravel-bed river. Geomorphology, 114(3), 326-337.
McIntire, D.C. (1973) Periphyton dynamics in laboratory streams: a simulation model and its implications. Ecological Monographs, 43(3), 399-420.
McIntire, C.D., Gregory, S.V., Steinman, A.D. & Lamberti, G.A. (1996) Modeling benthic algal communities: an example from stream ecology. In: Stevenson, R.J., Bothwell, M. & Lowe, R.L. (Eds.) Benthic algal ecology in freshwater ecosystems (Algal Ecology). San Diego: Academic Press, Inc., pp. 669-704.
McKay, L., Bondelid, T., Dewald, T., Johnston, J., Moore, R. & Rea, A. (2012) NHD Plus Version 2: User Guide. United States Environmental Protection Agency and United States Geological Survey.
McMullen, L.E., De Leenheer, P., Tonkin, J.D. & Lytle, D.A. (2017) High mortality and enhanced recovery: modelling the countervailing effects of disturbance on population dynamics. Ecology Letters, 20(12), 1566-1575.
Mejia, F.H., Fremier, A.K., Benjamin, J.R., Ryan Bellmore, J., Grimm, A.Z., Watson, G.A. et al. (2019) Stream metabolism increases with drainage area and peaks asynchronously across a stream network. Aquatic Sciences, 81(1), 9.
Moorcroft, P.R., Hurtt, G.C. & Pacala, S.W. (2001) A method for scaling vegetation dynamics: the ecosystem demography model (ED). Ecological Monographs, 71(4), 557-586.
Nichols, J.D., Kendall, W.L. & Boomer, G.S. (2019) Accumulating evidence in ecology: once is not enough. Ecology and Evolution, 9(24), 13991-14004.
Nichols, J.D., Oli, M.K., Kendall, W.L. & Boomer, G.S. (2021) A better approach for dealing with reproducibility and replicability in science. Proceedings of the National Academy of Sciences of the United States of America, 118, e2100769118.
O'Connor, B.L., Harvey, J.W. & McPhillips, L.E. (2012) Thresholds of flow-induced bed disturbances and their effects on stream metabolism in an agricultural river. Water Resources Research, 48(8), 1-18.
O'Donnell, B. & Hotchkiss, E.R. (2022) Resistance and resilience of stream metabolism to high flow disturbances. Biogeosciences, 19(4), 1111-1134.
Ogle, K., Barber, J.J., Barron-Gafford, G.A., Bentley, L.P., Young, J.M., Huxman, T.E. et al. (2015) Quantifying ecological memory in plant and ecosystem processes. Ecology Letters, 18(3), 221-235.
Padfield, D., Lowe, C., Buckling, A., Ffrench-Constant, R., Jennings, S., Shelley, F. et al. (2017) Metabolic compensation constrains the temperature dependence of gross primary production. Ecology Letters, 20(10), 1250-1260.
Peckarsky, B.L., McIntosh, A.R., Horn, S.C., McHugh, K., Booker, D.J., Wilcox, A.C. et al. (2014) Characterizing disturbance regimes of mountain streams. Freshwater Science, 33(3), 716-730.
Peipoch, M. & Ensign, S.H. (2022) Deciphering the origin of riverine phytoplankton using in situ chlorophyll sensors. Limnology & Oceanography Letters, 7(2), 159-166.
Perretti, C.T. & Stephan, B. (2013) Munch, and George Sugihara. Model-free forecasting outperforms the correct mechanistic model for simulated and experimental data. Proceedings of the National Academy of Sciences, 110(13), 5253-5257.
Pfeiffer, A.M., Finnegan, N.J. & Willenbring, J.K. (2017) Sediment supply controls equilibrium channel geometry in gravel rivers. Proceedings of the National Academy of Sciences, 114(13), 3346-3351.
Phillips, C.B. & Jerolmack, D.J. (2016) Self-organization of river channels as a critical filter on climate signals. Science, 352(6286), 694-697.
Poff, L.N., David Allan, J., Bain, M.B., Karr, J.R., Prestegaard, K.L., Richter, B.D. et al. (1997) The natural flow regime. Bioscience, 47(11), 769-784.
Power, M.E., Parker, M.S. & Dietrich, W.E. (2008) Seasonal reassembly of a river food web: floods, droughts, and impacts of fish. Ecological Monographs, 78(2), 263-282.
Pringle, C.M. & Hamazaki, T. (1997) Effects of fishes on algal response to storms in a tropical stream. Ecology, 78(8), 2432-2442.
Pringle, C.M. & Hamazaki, T. (1998) The role of omnivory in a neotropical stream: separating diurnal and nocturnal effects. Ecology, 79(1), 269-280.
Qasem, K., Vitousek, S., O'Connor, B. & Hoellein, T. (2019) The effect of floods on ecosystem metabolism in suburban streams. Freshwater Science, 38(2), 412-424.
R Core Team. (2022) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Rastetter, E.B. (2017) Modeling for understanding v. modeling for numbers. Ecosystems, 20(2), 215-221.
Reisinger, A.J., Rosi, E.J., Bechtold, H.A., Doody, T.R., Kaushal, S.S. & Groffman, P.M. (2017) Recovery and resilience of urban stream metabolism following superstorm sandy and other floods. Ecosphere, 8(4), e01776.
Reisinger, A.J., Tank, J.L. & Dee, M.M. (2016) Regional and seasonal variation in nutrient limitation of river biofilms. Freshwater Science, 35(2), 474-489.
Resh, V.H., Brown, A.V., Covich, A.P., Gurtz, M.E., Li, H.W., Wayne Minshall, G. et al. (1998) The role of disturbance in stream ecology. Journal of the North American Benthological Society, 7(4), 433-455.
Ricker, W.E. (1954) Stock and recruitment. Journal of the Fisheries Research Board of Canada, 11(5), 559-623.
Roberts, B.J., Mulholland, P.J. & Hill, W.R. (2007) Multiple scales of temporal variability in ecosystem metabolism rates: results from 2 years of continuous monitoring in a forested headwater stream. Ecosystems, 10(4), 588-606.
Roley, S.S., Tank, J.L., Griffiths, N.A., Hall, R.O. & Davis, R.T. (2014) The influence of floodplain restoration on whole-stream metabolism in an agricultural stream: insights from a 5-year continuous data set. Freshwater Science, 33, 1043-1059.
Ruffing, C.M., Veach, A.M., Schechner, A., Rüegg, J., Trentman, M.T. & Dodds, W.K. (2022) Prairie stream metabolism recovery varies based on antecedent hydrology across a stream network after a bank-full flood. Limnology & Oceanography, 67(9), 1986-1999.
Savoy, P. & Harvey, J.W. (2021a) Light model and GPP estimates for 173 U.S. rivers. U.S. Geological Survey data release.
Savoy, P. & Harvey, J.W. (2021b) Predicting light regime controls on primary productivity across CONUS river networks. Geophysical Research Letters, 48(10), e2020GL092149.
Savoy, P., Appling, A.P., Heffernan, J.B., Stets, E.G., Read, J.S., Harvey, J.W. et al. (2019) Metabolic rhythms in flowing waters: an approach for classifying river productivity regimes. Limnology & Oceanography, 64, 1-17.
Savoy, P., Bernhardt, E., Kirk, L., Cohen, M.J. & Heffernan, J.B. (2021) A seasonally dynamic model of light at the stream surface. Freshwater Science, 40(2), 286-301.
Segatto, P.L., Battin, T.J. & Bertuzzo, E. (2020) Modeling the coupled dynamics of stream metabolism and microbial biomass. Limnology & Oceanography, 65(7), 1573-1593.
Stan Development Team. (2020) RStan: The R interface to Stan. R package version 2.21.2.
Stanley, E.H., Fisher, S.G. & Grimm, N.B. (1997) Ecosystem expansion and contraction in streams. Bioscience, 47(7), 427-435.
Stanley, E.H., Powers, S.M. & Lottig, N.R. (2010) The evolving legacy of disturbance in stream ecology: concepts, contributions, and coming challenges. Journal of the North American Benthological Society, 29(1), 67-83.
Torizzo, M. & Pitlick, J. (2004) Magnitude-frequency of bed load transport in mountain streams in Colorado. Journal of Hydrology, 290(1-2), 137-151.
Tredennick, A.T., Hooker, G., Ellner, S.P. & Adler, P.B. (2021) A practical guide to selecting models for exploration, inference, and prediction in ecology. Ecology, 102(6), e03336.
Tredennick, A.T., Hooten, M.B. & Adler, P.B. (2017) Do we need demographic data to forecast plant population dynamics? Methods in Ecology and Evolution, 8(5), 541-551.
Uehlinger, U. (2000) Resistance and resilience of ecosystem metabolism in a flood-prone river system. Freshwater Biology, 45, 319-332.
Uehlinger, U., Buhrer, H. & Reichert, P. (1996) Periphyton dynamics in a floodprone prealpine river: evaluation of significant processes by modelling. Freshwater Biology, 36, 249-263.
Vadeboncoeur, Y. & Power, M.E. (2017) Attached algae: the cryptic base of inverted trophic pyramids in freshwaters. Annual Review of Ecology, Evolution, and Systematics, 48(1), 255-279.
Van Looy, K., Tonkin, J.D., Floury, M., Leigh, C., Soininen, J., Larsen, S. et al. (2019) The three Rs of river ecosystem resilience: resources, recruitment, and refugia. River Research and Applications, 35(2), 107-120.
Ward, E.J., Holmes, E.E., Thorson, J.T. & Collen, B. (2014) Complexity is costly: a meta-analysis of parametric and non-parametric methods for short-term population forecasting. Oikos, 123(6), 652-661.
Welter, J.R., Benstead, J.P., Cross, W.F., Hood, J.M., Huryn, A.D., Johnson, P.W. et al. (2015) Does N2 fixation amplify the temperature dependence of ecosystem metabolism? Ecology, 96(3), 603-610.
Williams, B.K., Nichols, J.D. & Conroy, M.J. (2002) Analysis and management of animal populations. San Diego, CA: Academic Press.
Wolman, M.G. & Miller, J.P. (1960) Magnitude and frequency of forces in geomorphic processes. Journal of Geology, 68(1), 54-74.
معلومات مُعتمدة: 1834679 Division of Environmental Biology; 2019528 Office of Integrative Activities
فهرسة مساهمة: Keywords: autotrophic biomass; disturbance ecology; gross primary productivity; population dynamics; resilience
تواريخ الأحداث: Date Created: 20230624 Date Completed: 20230901 Latest Revision: 20230901
رمز التحديث: 20230901
DOI: 10.1111/ele.14269
PMID: 37353910
قاعدة البيانات: MEDLINE
الوصف
تدمد:1461-0248
DOI:10.1111/ele.14269