دورية أكاديمية

Climbing mechanisms and the diversification of neotropical climbing plants across time and space.

التفاصيل البيبلوغرافية
العنوان: Climbing mechanisms and the diversification of neotropical climbing plants across time and space.
المؤلفون: Sperotto P; Programa de Pós-Graduação em Botânica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, CEP 91501-970, RS, Brazil.; Programa de Pós-Graduação em Botânica, Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana, CEP 44036-900, BA, Brazil., Roque N; Instituto de Biologia, Universidade Federal da Bahia, Salvador, CEP 40170-115, BA, Brazil., Acevedo-Rodríguez P; Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, 37012, DC, USA., Vasconcelos T; Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, 48109, MI, USA.
المصدر: The New phytologist [New Phytol] 2023 Nov; Vol. 240 (4), pp. 1561-1573. Date of Electronic Publication: 2023 Jun 28.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley on behalf of New Phytologist Trust Country of Publication: England NLM ID: 9882884 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1469-8137 (Electronic) Linking ISSN: 0028646X NLM ISO Abbreviation: New Phytol Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford : Wiley on behalf of New Phytologist Trust
Original Publication: London, New York [etc.] Academic Press.
مواضيع طبية MeSH: Plant Roots*, South America ; Phenotype ; Central America
مستخلص: Climbers germinate on the ground but need external support to sustain their stems, which are maintained attached to supports through modified organs, that is, climbing mechanisms. Specialized climbing mechanisms have been linked to higher diversification rates. Also, different mechanisms may have different support diameter restrictions, which might influence climbers' spatial distribution. We test these assumptions by linking climbing mechanisms to the spatiotemporal diversification of neotropical climbers. A dataset of climbing mechanisms is presented for 9071 species. WCVP was used to standardize species names, map geographical distributions, and estimate diversification rates of lineages with different mechanisms. Twiners appear concentrated in the Dry Diagonal of South America and climbers with adhesive roots in the Chocó region and Central America. However, climbing mechanisms do not significantly influence the distribution of neotropical climbers. Also, we found no strong support for correlations between specialized climbing mechanisms and higher diversification rates. Climbing mechanisms do not strongly impact the spatiotemporal diversification of neotropical climbers on a macroevolutionary scale. We argue that the climbing habit is a synnovation, meaning the spatiotemporal diversification it promotes is due to the sum effect of all the habit's traits rather than isolated traits, such as climbing mechanisms.
(© 2023 The Authors. New Phytologist © 2023 New Phytologist Foundation This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.)
References: Acevedo-Rodríguez P, Ackerman JD, Anderson C, Austin D, Biral L, Calvo J, Delprete P, Dressler S, Feuillet C, Liede-Schumann S et al. 2015 [onwards]. Lianas and climbing plants of the Neotropics. [WWW document] URL https://naturalhistory.si.edu/research/botany/research/lianas-and-climbing-plants-neotropics [accessed 15 July 2021].
Addo-Fordjour P, Rahmad ZB. 2015. Liana assemblages in tropical forests of Africa and Southeast Asia: diversity, abundance, and management. In: Parthasarathy N, ed. Biodiversity of Lianas. Cham, Switzerland: Springer International Publishing, 81-98.
Addo-Fordjour P, Rahmad ZB, Burnham RJ. 2017. Intercontinental comparison of liana community assemblages in tropical forests of Ghana and Malaysia. Journal of Plant Ecology 10: 883-894.
Angiosperm Phylogeny Group, Chase MW, Christenhusz MJ, Fay MF, Byng JW, Judd WS, Soltis DE, Mabberley DJ, Sennikov AN, Soltis PS et al. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1-20.
Angyalossy V, Pace MR, Lima AC. 2015. Liana anatomy: a broad perspective on structural evolution of the vascular system. In: Schnitzer SA, Bongers F, Burnham RJ, Putz FE, eds. Ecology of lianas. Chichester, UK: JohnWiley & Sons, 253-288.
Antonelli A, Sanmartín I. 2011. Why are there so many plant species in the Neotropics? Taxon 60: 403-414.
Antonelli A, Zizka A, Carvalho FA, Scharna R, Bacona CD, Silvestro D, Condamine FL. 2018. Amazonia is the primary source of Neotropical biodiversity. Proceedings of the National Academy of Sciences, USA 115: 6034-6039.
de Azevedo AT, Nunes-Freitas AF, Rosado BHP. 2018. Revisiting the hypothesis for increasing liana abundance in seasonal forests: a theoretical review. Plant and Soil 430: 1-6.
Bell AD. 1991. An illustrated guide to flowering plant morphology. Oxford, UK: University Press.
Bivand RS, Pebesma EJ, Gómez-Rubio V, Pebesma EJ. 2008. Applied spatial data analysis with R. New York, NY, USA: Springer.
Breña-Naranjo JA, Pedrozo-Acuña A, Rico-Ramirez MA. 2015. World's greatest rainfall intensities observed by satellites. Atmospheric Science Letters 16: 420-424.
Burnham RJ, Revilla-Minaya C. 2011. Phylogenetic influence on twining chirality in lianas from Amazonian Peru. Annals of the Missouri Botanical Garden 98: 196-205.
Carlquist S. 1991. Anatomy of vine and liana stems: a review and synthesis. In: Putz FE, Mooney HA, eds. The biology of vines. Cambridge, UK: Cambridge University Press, 53-71.
Castellanos AE. 1991. Photosynthesis and gas exchange of vines. In: Putz FE, Mooney HA, eds. The Biology of vines. Cambridge, UK: Cambridge University Press, 181-204.
Chamberlain S, Barve V, Mcglinn D, Oldoni D, Desmet P, Geffert L, Ram K. 2022. rgbif: interface to the global biodiversity information facility API. R package v.3.7.3. [WWW document] URL https://CRAN.R-project.org/package=rgbif [accessed 08 April 2022].
Chamberlain S, Szocs E. 2013. taxize - taxonomic search and retrieval in R. F1000Research 2: 191.
Chamberlain S, Szoecs E, Foster Z, Arendsee Z, Boettiger C, Ram K, Bartomeus I, Baumgartner J, O'Donnell J, Oksanen J et al. 2020. taxize: taxonomic information from around the web. R package v.0.9.98. [WWW document] URL https://github.com/ropensci/taxize [accessed 10 April 2022].
Chery JG, Glos RA, Anderson CT. 2022. Do woody vines use gelatinous fibers to climb? New Phytologist 233: 126-131.
Couvreur TL, Kissling WD, Condamine FL, Svenning J-C, Rowe NP, Baker WJ. 2015. Global diversification of a tropical plant growth form: environmental correlates and historical contingencies in climbing palms. Frontiers in Genetics 5: 452.
Darwin C. 1865. On the movements and habits of climbing plants. Botanical Journal of the Linnean Society 9: 1-118.
DeWalt SJ, Schnitzer SA, Alves LF, Bongers F, Burnham RJ, Cai Z, Carson WP, Chave J, Chuyong GB, Costa FRC et al. 2015. Biogeographical patterns of liana abundance and diversity. In: Schnitzer SA, Bongers F, Burnham RJ, Putz FE, eds. Ecology of lianas. Chichester, UK: JohnWiley & Sons, Ltd, 131-146.
DeWalt SJ, Schnitzer SA, Denslow JS. 2000. Density and diversity of lianas along a chronosequence in a central Panamanian lowland forest. Journal of Tropical Ecology 16: 1-19.
Donoghue MJ. 1989. Phylogenies and the analysis of evolutionary sequences, with examples from seed plants. Evolution 43: 1137-1156.
Donoghue MJ, Sanderson MJ. 2015. Confluence, synnovation, and depauperons in plant diversification. New Phytologist 207: 260-274.
Durigon J, Durán SM, Gianol E. 2013. Global distribution of root climbers is positively associated with precipitation and negatively associated with seasonality. Journal of Tropical Ecology 29: 357-360.
Durigon J, Miotto STS, Gianoli E. 2014. Distribution and traits of climbing plants in subtropical and temperate South America. Journal of Vegetation Science 25: 1484-1492.
Durigon J, Sperotto P, Ferreira PPA, Dettke GA, Záchia RA, Farinaccio MA, Seger GDS, Miotto STS. 2019. Updates on extratropical region climbing plant flora: news regarding a still-neglected diversity. Acta Botanica Brasilica 33: 644-653.
Ewers FW, Fisher JB, Fichtner K. 1991. Water flux and xylem structure in vines. In: Putz FE, Mooney HA, eds. The biology of vines. Cambridge, UK: Cambridge University Press, 127-160.
Felsenstein J. 1985. Phylogenies and the comparative method. The American Naturalist 125: 1-15.
Font-Quer P. 2001. Diccionario de Botánica. Barcelona, Spain: Ediciones Península.
Gentry AH. 1982. Neotropical floristic diversity: phytogeographical connections between central and south America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? Annals of the Missouri Botanical Garden 69: 557-593.
Gentry AH. 1988. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden 75: 1-34.
Gentry AH. 1991. The distribution and evolution of climbing plants. In: Putz FE, Mooney HA, eds. The biology of vines. Cambridge, UK: Cambridge University Press, 3-49.
Gentry AH, Emmons LH. 1987. Geographical variation in fertility, phenology, and composition of the understory of neotropical forests. Biotropica 19: 216-227.
Gerwing JJ, Schnitzer SA, Burnham RJ, Bongers F, Chave J, DeWalt AJ, Ewango CEN, Foster R, Kenfack D, Martínez-Ramos M et al. 2006. A standard protocol for liana censuses. Biotropica 38: 256-261.
Gianoli E. 2004. Evolution of a climbing habit promotes diversification in flowering plants. Proceedings of the Royal Society B: Biological Sciences 271: 2011-2015.
Gianoli E. 2015. Evolutionary implications of the climbing habit. In: Schnitzer SA, Bongers F, Burnham RJ, Putz FE, eds. Ecology of lianas. Chichester, UK: JohnWiley & Sons, 239-250.
Gianoli E, Saldaña A, Jiménez-Castillo M, Valladares F. 2010. Distribution and abundance of vines along the light gradient in a southern temperate rain forest. Journal of Vegetation Science 21: 66-73.
Givnish TJ. 2015. Adaptive radiation versus ‘radiation’ and ‘explosive diversification’: why conceptual distinctions are fundamental to understanding evolution. New Phytologist 207: 297-303.
Givnish TJ, Vermeij GJ. 1976. Sizes and shapes of liane leaves. The American Naturalist 110: 743-778.
Govaerts R. 2022. The world checklist of vascular plants (WCVP). In: Bánki O, Roskov Y, Döring M, Ower G, Vandepitte L, Hobern D, Remsen D, Schalk P, DeWalt RE, Keping M et al., eds. Catalogue of life checklist (10.0). Richmond, UK: The Royal Botanic Gardens, Kew.
Grace OM, Pérez-Escobar OA, Lucas EJ, Vorontsova MS, Lewis GP, Walker BE, Antonelli A et al. 2021. Botanical monography in the Anthropocene. Trends in Plant Science 26: 433-441.
Grime JP. 2001. Plant strategies, vegetation processes, and ecosystem properties, 2nd edn. Chichester, UK: John Wiley & Sons.
Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W. 2008. geiger: investigating evolutionary radiations. Bioinformatics 24: 129-131.
Hegarty EE. 1988. Canopy dynamics of lianes and trees in subtropical rainforest. PhD thesis. Brisbane, Qld, Australia: University of Queensland.
Hegarty EE. 1991. Vine-host interactions. In: Putz FE, Mooney HA, eds. The biology of vines. Cambridge, UK: Cambridge University Press, 357-375.
Hegarty EE, Caballé G. 1991. Distribution and abundance of vines in forest communities. In: Putz FE, Mooney HA, eds. The biology of vines. Cambridge, UK: Cambridge University Press, 313-335.
Hijmans RJ. 2022. raster: geographic data analysis and modeling. R package v.3.6-3. [WWW document] URL https://CRAN.R-project.org/package=raster [accessed 15 April 2022].
Hu L, Li M, Li Z. 2010. Geographical and environmental gradients of lianas and vines in China. Global Ecology and Biogeography 19: 554-561.
Isnard S, Silk WK. 2009. Moving with climbing plants from Charles Darwin's time into the 21st century. American Journal of Botany 96: 1205-1221.
LaFrankie JV, Ashton PS, Chuyong GB, Co L, Condit R, Davies SJ, Foster R, Hubbell SP, Kenfack D, Lagunzad D et al. 2006. Contrasting structure and composition of the understory in species-rich tropical rain forests. Ecology 87: 2298-2305.
Leal ES, Vasconcelos TN, Tuberquia D, Soto Gomez M, Michelangeli FA, Forzza RC, de Mello-Silva R. 2022. Phylogeny and historical biogeography of the Panama-hat family (Cyclanthaceae, Pandanales). Taxon 71: 963-980. doi: 10.1002/tax.12769.
Lines ER, Zavala MA, Purves DW, Coomes DA. 2012. Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition. Global Ecology and Biogeography 21: 1017-1028.
Magallón S, Gómez-Acevedo S, Sánchez-Reyes LL, Hernández-Hernández T. 2015. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytologist 207: 437-453.
Magallón S, Sanderson MJ. 2001. Absolute diversification rates in Angiosperm clades. Evolution 55: 1762-1780.
Mohl H. 1827. Über den Bau und Winden der Ranken und Schlingpflanzen. Tübingen, Germanny: Heinrich Laupp.
Nakov T, Beaulieu JM, Alverson AJ. 2018. Accelerated diversification is related to life history and locomotion in a hyperdiverse lineage of microbial eukaryotes (Diatoms, Bacillariophyta). New Phytologist 219: 462-473.
Neves DM, Dexter KG, Pennington RT, Bueno ML, Oliveira Filho AT. 2015. Environmental and historical controls of floristic composition across the South American Dry Diagonal. Journal of Biogeography 42: 1566-1576.
Nge FJ, Biffin E, Thiele KR, Waycott M. 2020. Extinction pulse at Eocene-Oligocene boundary drives diversification dynamics of two Australian temperate floras. Proceedings of the Royal Society B: Biological Sciences 287: 20192546.
Onstein R. 2019. Darwin's second ‘abominable mystery’: trait flexibility as the innovation leading to angiosperm diversity. New Phytologist 228: 1741-1747.
Palm LH. 1827. Über das Winden der Pflanzen. Stuttgart, Germany: F. C. Löflund et Sohn.
Pandi V, Naveen Babu K, Anbarashan M, Sudhakar Reddy C, Borgohain J, Shynyan K, Achamma Mathew A, Rakshith H, Joseph J, Kennedy VN et al. 2022. Taxonomic estimates of climbing plants in India: how many species are out there? Écoscience 29: 325-343.
Paradis E, Schliep K. 2019. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35: 526-528.
Paul GS, Yavitt JB. 2011. Tropical vine growth and the effects on forest succession: a review of the ecology and management of tropical climbing plants. The Botanical Review 77: 11-30.
Pebesma E, Bivand RS. 2005. S classes and methods for spatial data: the sp package. R News 5: 9-13.
Putz FE. 1984. The natural history of lianas on Barro Colorado Island, Panama. Ecology 65: 1713-1724.
Putz FE, Chai P. 1987. Ecological studies of lianas in Lambir National Park, Sarawak, Malaysia. Journal of Ecology 75: 523-531.
Putz FE, Holbrook NM. 1991. Biomechanical studies of vines. In: Putz FE, Mooney HA, eds. The biology of vines. Cambridge, UK: Cambridge University Press, 73-98.
R Core Team. 2022. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. [WWW document] URL https://www.R-project.org/ [accessed 20 January 2022].
Rabosky DL. 2010. Extinction rates should not be estimated from molecular phylogenies. Evolution: International Journal of Organic Evolution 64: 1816-1824.
Raven PH, Gereau RE, Phillipson PB, Chatelain C, Jenkins CN, Ulloa C. 2020. The distribution of biodiversity richness in the tropics. Science Advances 6: eabc6228.
Reginato M. 2016. monographaR: an R package to facilitate the production of plant taxonomic monographs. Brittonia 68: 212-216.
Revell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3: 217-223.
Richards PW. 1952. The tropical rain forest - an ecological study. Cambridge, UK: Cambridge University Press.
Richards PW. 1991. Foreword. In: Putz FE, Mooney HA, eds. The biology of vines. Cambridge, UK: Cambridge University Press.
Schenck H. 1892. Heft 4: Beiträge zur Biologie und Anatomie der Lianen, im Besonderes der in Brasilien einheimischen Arten. I Theil: Beiträge zur Biologie der Lianen. Jena, Germany: Gustav Fischer.
Schley RJ, de la Estrella M, Pérez-Escobar OA, Bruneau A, Barraclough T, Forest F, Klitgård B. 2018. Is Amazonia a ‘museum’ for neotropical trees? The evolution of the Brownea clade (Detarioideae, Leguminosae). Molecular Phylogenetics and Evolution 126: 279-292.
Schliep K. 2011. phangorn: phylogenetic analysis in R. Bioinformatics 27: 592-593.
Schnitzer SA. 2005. A mechanistic explanation for global patterns of liana abundance and distribution. The American Naturalist 166: 262-276.
Schnitzer SA, Bongers F. 2002. The ecology of lianas and their role in forests. Trends in Ecology & Evolution 17: 223-230.
Schnitzler A, Amigo J, Hale B, Schnitzler C. 2016. Patterns of climber distribution in temperate forests of the Americas. Journal of Plant Ecology 9: 724-733.
Seger GDS, Cappelatti L, Goncalves LO, Becker FG, Melo AS, Duarte LD. 2017. Phylogenetic and functional structure of climbing plant assemblages in woody patches advancing over Campos grassland. Journal of Vegetation Science 28: 1187-1197.
Smith SA, Brown JW. 2018. Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany 105: 1-13.
Sousa-Baena MS, Sinha NR, Hernandes-Lopes J, Lohmann LG. 2018. Convergent evolution and the diverse ontogenetic origins of tendrils in angiosperms. Frontiers in Plant Science 9: 1-19.
Sperotto P, Acevedo-Rodríguez P, Vasconcelos TNC, Roque N. 2020. Towards a standardization of terminology of the climbing habit in plants. The Botanical Review 86: 180-210.
Toledo M, Poorter L, Pena-Claros M, Alarcón A, Balcázar J, Leano C, Licona JC, Bongers F. 2011. Climate and soil drive forest structure in Bolivian lowland forests. Journal of Tropical Ecology 27: 333-345.
Trabucco A, Zomer RJ. 2018. Global Aridity Index and potential evapotranspiration (ET0) climate database v2. GIAR-CSI - Consortium for Spatial Information 10: m9.
Tyree MT, Sperry JS. 1989. Vulnerability of xylem to cavitation and embolism. Annual Review of Plant Physiology and Plant Molecular Biology 40: 19-36.
Vasconcelos T. 2023. A trait-based approach to determining principles of plant biogeography. American Journal of Botany 110: e16127.
Vasconcelos T, Boyko JD, Beaulieu JM. 2022. Linking mode of seed dispersal and climatic niche evolution in flowering plants. Journal of Biogeography 50: 43-56.
Vasconcelos T, Chartier M, Prenner G, Martins AC, Schönenberger J, Wingler A, Lucas E. 2019. Floral uniformity through evolutionary time in a species-rich tree lineage. New Phytologist 221: 1597-1608.
Wickham H, François R, Henry L, Müller K. 2019. dplyr: a grammar of data manipulation. R package v.0.8.3. [WWW document] URL https://CRAN.R-project.org/package=dplyr [accessed 12 March 2022].
Wiens JJ, Donoghue MJ. 2004. Historical biogeography, ecology and species richness. Trends in Ecology and Evolution 19: 639-644.
Wilder GJ. 1992. Comparative morphology and anatomy of absorbing roots and anchoring roots in three species of Cyclanthaceae (Monocotyledoneae). Canadian Journal of Botany 70: 38-48.
Wyka TP, Oleksyn J, Karolewski P, Schnitzer SA. 2013. Phenotypic correlates of the lianescent growth form: a review. Annals of Botany 112: 1667-1681.
Xue B, Guo X, Landis J, Sun M, Tang C, Soltis P, Soltis D, Saunders R. 2020. Accelerated diversification correlated with functional traits shapes extant diversity of the early divergent angiosperm family Annonaceae. Molecular Phylogenetics and Evolution 142: 106659.
فهرسة مساهمة: Keywords: Neotropics; climbing mechanisms; climbing plants; diversification; evolution; lianas; synnovation; vines
تواريخ الأحداث: Date Created: 20230629 Date Completed: 20231023 Latest Revision: 20231026
رمز التحديث: 20240829
DOI: 10.1111/nph.19093
PMID: 37381080
قاعدة البيانات: MEDLINE
الوصف
تدمد:1469-8137
DOI:10.1111/nph.19093